e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

Dec 24 / Posted by OMNeT++ MANUAL

No Comments

Ultra-low-power ECG front-end design based on compressed sensing

Ultra-low-power design has been a challenging area for design of the sensor front-ends especially in the area of Wireless Body Sensor Nodes (WBSN), where a limited amount of power budget and hardware resources are available. Since introduction of Compressed Sensing, there has been a challenge to design CS-based low-power readout devices for different applications and among all for biomedical signals. Till now, different proposed realizations of the digital CS prove the suitability of using CS as an efficient low-power compression technique for compressible biomedical signals. However, these works mainly take advantages of only one aspect of the benefits of the CS. In this type of works, CS is usually used as a very low cost and easy to implement compression technique.

This means that we should acquire the signal with traditional limitations on the bandwidth (BW) and later compresses it. However, the main power of the CS, which lies on the efficient data acquisition, remains untouched. Building on our previous work [1], where the suitability of the CS is proven for the compression of the ECG signals, and our investigation on ultra-low-power CS-based A2I devices [2], here in this paper we propose a fully redesigned complete CS-based “Analog-to-information” (A/I) front-end for ECG signals. Our results show that proposed hybrid design easily outperforms the traditional implementation of CS with more than 11 times fold reduction in power consumption compared to standard implementation of CS. Moreover our design shows a very promising performance specially in high compression ratio.

Tags: inet framework omnet++,omnet++ project,omnet++ simulator

Categories: MS Omnet++ Projects

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .