e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

Dec 23 / Posted by OMNeT++ MANUAL

No Comments

Malleable NoC: Dark silicon inspired adaptable Network-on-Chip

Network on Chip (NoC) has been envisioned as a scalable fabric for many core chips. However, NoCs can consume a considerable share of chip power. Moreover, diverse applications are executed in these multicore, where each application imposes a unique load on the NoC. To realise a NoC which is Energy and Delay efficient, we propose combining multiple VF optimized routers for each node (in traditional NoCs, we have only a single router per node) for efficient NoC for Dark Silicon chips. We present a generic NoC with routers designed for different VF levels, which are distributed across the chip.

At runtime, depending on application profile, we combine these VF optimized routers to form constantly changing energy efficient NoC fabric. We call our architecture Malleable NoC. In this paper, we describe the architectural details of the proposed architecture and the runtime algorithms required to dynamically adapt the NoC resources. We show that for a variety of multi program benchmarks executing on Malleable NoC, Energy Delay product (EDP) can be reduced by up to 46% for widely differing workloads. We further show the effect on EDP savings for differing amounts of dark silicon area budget.

Tags: omnet++ projects,omnet++ simulation,veins omnet++

Categories: Latest Omnet++ Projects

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .