To implement the Vehicular Ad Hoc Networks (VANETs) in OMNeT++ has needs to generate a emulation that contains vehicles and roadside units (RSUs), describing network models, and executing the VANET-based communication protocols. We need to use the Veins framework, which is built on top of OMNeT++ and INET that particularly modelled for VANET simulations. Here, we offer the procedures on how to implement the simple VANET in OMNet++:
Step-by-Step Implementation:
Step 1: Install OMNeT++, INET Framework, and Veins
Step 2: Set Up Your Project
Step 3: Define VANET Network Models Using NED
package vanet;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
import inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator;
import inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadioMedium;
import inet.mobility.single.TraCIMobility;
import veins.node.vehicle.TraCIMobility;
network VANETNetwork
{
parameters:
int numVehicles = default(10);
types:
channel radioChannel extends Ieee80211ScalarRadioMedium {}
submodules:
configurator: Ipv4NetworkConfigurator {
@display(“p=100,100”);
}
rsu: Router {
@display(“p=200,100”);
}
vehicle[numVehicles]: StandardHost {
@display(“p=300+100*i,200”);
mobility.typename = “TraCIMobility”;
}
radioMedium: radioChannel {
@display(“p=400,100”);
}
connections allowunconnected:
for i=0..numVehicles-1 {
vehicle[i].wlan[0] <–> radioMedium <–> rsu.wlan[0];
}
}
Step 4: Implement VANET Communication Logic
#include <omnetpp.h>
#include “inet/applications/base/ApplicationBase.h”
#include “inet/applications/udpapp/UdpBasicApp.h”
#include “inet/networklayer/common/L3AddressResolver.h”
#include “inet/networklayer/contract/ipv4/Ipv4Address.h”
#include “inet/networklayer/contract/IL3AddressType.h”
using namespace omnetpp;
using namespace inet;
class VehicleApp : public ApplicationBase
{
protected:
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void sendBeacon();
void handleBeacon(cPacket *pkt);
cMessage *sendEvent = nullptr;
};
Define_Module(VehicleApp);
void VehicleApp::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_LOCAL) {
sendEvent = new cMessage(“sendBeacon”);
scheduleAt(simTime() + par(“startTime”), sendEvent);
}
}
void VehicleApp::handleMessageWhenUp(cMessage *msg)
{
if (msg == sendEvent) {
sendBeacon();
scheduleAt(simTime() + par(“sendInterval”), sendEvent);
} else {
cPacket *pkt = check_and_cast<cPacket *>(msg);
handleBeacon(pkt);
}
}
void VehicleApp::sendBeacon()
{
// Create and send a beacon packet to other vehicles and RSUs
EV << “Sending beacon” << endl;
cPacket *pkt = new cPacket(“Beacon”);
pkt->setByteLength(par(“beaconSize”));
send(pkt, “lowerLayerOut”);
}
void VehicleApp::handleBeacon(cPacket *pkt)
{
// Handle received beacon packet from other vehicles and RSUs
EV << “Received beacon: ” << pkt->getName() << endl;
delete pkt;
}
#include <omnetpp.h>
#include “inet/applications/base/ApplicationBase.h”
#include “inet/applications/udpapp/UdpBasicApp.h”
#include “inet/networklayer/common/L3AddressResolver.h”
#include “inet/networklayer/contract/ipv4/Ipv4Address.h”
#include “inet/networklayer/contract/IL3AddressType.h”
using namespace omnetpp;
using namespace inet;
class RSUApp : public ApplicationBase
{
protected:
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void handleBeacon(cPacket *pkt);
};
Define_Module(RSUApp);
void RSUApp::initialize(int stage)
{
ApplicationBase::initialize(stage);
}
void RSUApp::handleMessageWhenUp(cMessage *msg)
{
if (msg->isSelfMessage()) {
delete msg;
} else {
cPacket *pkt = check_and_cast<cPacket *>(msg);
handleBeacon(pkt);
}
}
void RSUApp::handleBeacon(cPacket *pkt)
{
// Handle received beacon packet from vehicles
EV << “Received beacon: ” << pkt->getName() << endl;
delete pkt;
}
Step 5: Configure Simulation Parameters
network = VANETNetwork
sim-time-limit = 100s
# Mobility
**.vehicle[*].mobility.bounds = “0,0,1000,1000”
**.vehicle[*].mobility.speed = uniform(1mps, 10mps)
# Vehicle application parameters
**.vehicle[*].udpApp.startTime = uniform(0s, 10s)
**.vehicle[*].udpApp.sendInterval = exponential(1s)
**.vehicle[*].udpApp.beaconSize = 256B
**.vehicle[*].udpApp.localPort = 1000
**.vehicle[*].udpApp.destPort = 2000
# RSU application parameters
**.rsu.udpApp.localPort = 2000
Step 6: Integrate Veins and SUMO for Mobility
**.manager.moduleType = “veins::TraCIScenarioManagerForker”
**.manager.launchConfig = xmldoc(“sumo-launchd.xml”)
**.vehicle[*].mobility.typename = “veins::TraCIMobility”
**.rsu.mobility.typename = “veins::TraCIMobility”
Step 7: Build and Run the Simulation
Step 8: Analyse Results
In the end, we demonstrate the valuable insights regarding how the Vehicular Ad Hoc Networks emulate in the VANET simulations. We provide the more information about how the VANET environment performs in other tools.
We have conducted work on VANET protocols within the OMNeT++ framework and are pleased to share our simulation results with you. Please provide us with the details of your project, and we will be happy to assist you further. Additionally, we offer implementation services for VANET using the OMNeT++ tool.