To implement the Smart Grid Networks in OMNeT++ has needs to modelling the communication organisation of smart grids that contains the advanced metering infrastructure (AMI), demand response systems, distributed energy resources (DER), and numerous communication protocols. The given step is the brief procedures on implementing Smart Grid Networks in OMNeT++ using the INET framework:
Step-by-Step Implementation
Make sure we have OMNeT++ and the INET Framework installed.
Generate a new NED file to describe network topology has contains smart meters, substations, and control centers.
Example: Smart Grid Network Topology (SmartGridNetwork.ned)
package smartgridnetwork;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
network SmartGridNetwork
{
parameters:
@display(“bgb=800,400”);
submodules:
smartMeter1: StandardHost {
@display(“p=100,300”);
}
smartMeter2: StandardHost {
@display(“p=300,300”);
}
substation: Router {
@display(“p=200,200”);
}
controlCenter: StandardHost {
@display(“p=400,100”);
}
connections:
smartMeter1.ethg++ <–> Eth10M <–> substation.ethg++;
smartMeter2.ethg++ <–> Eth10M <–> substation.ethg++;
substation.ethg++ <–> Eth10M <–> controlCenter.ethg++;
}
Create an OMNeT++ initialization file to configure the parameters of the simulation.
Example: Configuration File (omnetpp.ini)
network = smartgridnetwork.SmartGridNetwork
sim-time-limit = 100s
# Visualization
*.visualizer.canvasVisualizer.displayBackground = true
*.visualizer.canvasVisualizer.displayGrid = true
# Smart Meter Configuration
*.smartMeter*.numApps = 1
*.smartMeter*.app[0].typename = “UdpBasicApp”
*.smartMeter*.app[0].destAddresses = “substation”
*.smartMeter*.app[0].destPort = 5000
*.smartMeter*.app[0].messageLength = 1024B
*.smartMeter*.app[0].sendInterval = 1s
# Substation Configuration
*.substation.numApps = 1
*.substation.app[0].typename = “UdpSink”
*.substation.app[0].localPort = 5000
# Control Center Configuration
*.controlCenter.numApps = 1
*.controlCenter.app[0].typename = “UdpSink”
*.controlCenter.app[0].localPort = 6000
# UDP Configuration
*.smartMeter*.hasUdp = true
*.substation.hasUdp = true
*.controlCenter.hasUdp = true
# IP Address Configuration
*.smartMeter1.ipv4.config = xmldoc(“smartMeter1.xml”)
*.smartMeter2.ipv4.config = xmldoc(“smartMeter2.xml”)
*.substation.ipv4.config = xmldoc(“substation.xml”)
*.controlCenter.ipv4.config = xmldoc(“controlCenter.xml”)
Generate XML files to design the IP address configuration for each node.
Example: IP Configuration File for smartMeter1 (smartMeter1.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.1</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for smartMeter2 (smartMeter2.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.2</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for substation (substation.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.254</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for controlCenter (controlCenter.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.2.1</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
To emulate smart grid communication protocols so we must apply the logic for smart meter data transmission, substation processing, and control centre management.
Example: Smart Meter Application (Pseudo-Code)
class SmartMeterApp : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
private:
void sendData();
};
void SmartMeterApp::initialize() {
// Initialization code
scheduleAt(simTime() + 1, new cMessage(“sendData”));
}
void SmartMeterApp::handleMessage(cMessage *msg) {
if (strcmp(msg->getName(), “sendData”) == 0) {
sendData();
scheduleAt(simTime() + 1, msg);
} else {
// Handle other messages
}
}
void SmartMeterApp::sendData() {
// Logic to send data to the substation
}
Example: Substation Application (Pseudo-Code)
class SubstationApp : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
private:
void processData();
};
void SubstationApp::initialize() {
// Initialization code
}
void SubstationApp::handleMessage(cMessage *msg) {
// Process data from smart meters
processData();
}
void SubstationApp::processData() {
// Logic to process data from smart meters
}
Example: Control Center Application (Pseudo-Code)
class ControlCenterApp : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
private:
void manageGrid();
};
void ControlCenterApp::initialize() {
// Initialization code
}
void ControlCenterApp::handleMessage(cMessage *msg) {
// Manage grid operations based on data from substations
manageGrid();
}
void ControlCenterApp::manageGrid() {
// Logic to manage grid operations
}
Overall, we had demonstrated the smart grid network that was used in many communication infrastructures that were implemented in OMNeT++. We also offer additional information how the smart grid network will perform in other simulation tools. Our developers are here to assist with the implementation of Smart Grid Networks in the OMNeT++ tool. If you’re looking for more project ideas, feel free to reach out to us!