e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

How to Implement Ransomware Detection in OMNeT++

To implement ransomware detection in OMNeT++  has encompasses to mimic the network scenario where we need to observe and identify the suspicious activities that signifies a ransomware attack and the Ransomware detection is usually includes to identifying unusual file access patterns, encryption activities, or network behaviour indicative of ransomware. The below are the procedures on how to execute a simple ransomware detection mechanism in OMNeT++:

Steps to Implement Ransomware Detection in OMNeT++

  1. Define the Network Environment:
    • Set up a network setting with numerous nodes that denotes devices like servers, user workstations that may be targeted by ransomware.
    • Include a central detection system or security node that observes the network for ransomware activity.

simple WorkstationModule

{

parameters:

@display(“i=block/pc”);

gates:

inout ethg;

}

simple ServerModule

{

parameters:

@display(“i=block/server”);

gates:

inout ethg;

}

simple RansomwareDetector

{

parameters:

@display(“i=block/shield”);

gates:

inout monitorGate;

}

network RansomwareDetectionNetwork

{

submodules:

workstation1: WorkstationModule;

workstation2: WorkstationModule;

server: ServerModule;

detector: RansomwareDetector;

switch: EthernetSwitch;  // Assume you have an Ethernet switch module

connections:

workstation1.ethg <–> switch.ethg[0];

workstation2.ethg <–> switch.ethg[1];

server.ethg <–> switch.ethg[2];

switch.ethg[3] –> detector.monitorGate;  // Mirror traffic to the detector

}

  1. Simulate Normal and Malicious Traffic:
    • To mimic normal network operations, like file access and data transfers, as well as activities that might signifies a ransomware attack like rapid file encryption, abnormal network connections.

class WorkstationModule : public cSimpleModule {

protected:

virtual void initialize() override {

// Normal and malicious traffic generation logic

scheduleAt(simTime() + par(“startTime”), new cMessage(“generateTraffic”));

}

virtual void handleMessage(cMessage *msg) override {

if (strcmp(msg->getName(), “generateTraffic”) == 0) {

generateTraffic();

scheduleAt(simTime() + par(“interval”), msg);  // Reschedule

} else {

// Handle incoming traffic

cPacket *pkt = check_and_cast<cPacket*>(msg);

// Process the packet

delete pkt;

}

}

void generateTraffic() {

// Generate both normal and potentially malicious traffic

if (uniform(0, 1) < par(“maliciousProbability”)) {

// Simulate ransomware-like behavior

EV << “Simulating ransomware activity” << endl;

// Example: Send a burst of small packets to simulate rapid file encryption

for (int i = 0; i < 10; i++) {

cPacket *maliciousPkt = new cPacket(“ransomwareActivity”);

send(maliciousPkt, “ethg$o”);

}

} else {

// Normal traffic

cPacket *normalPkt = new cPacket(“normalTraffic”);

send(normalPkt, “ethg$o”);

}

}

};

  1. Implement the Ransomware Detection Logic:
    • Generate a detection module that examines network traffic for patterns features of ransomware, like a high volume of small packets or sudden spikes in network activity.

class RansomwareDetector : public cSimpleModule {

private:

int ransomwareIndicators = 0;

int threshold = 10;  // Threshold for triggering an alert

protected:

virtual void initialize() override {

// Initialization logic

ransomwareIndicators = 0;

}

virtual void handleMessage(cMessage *msg) override {

cPacket *pkt = check_and_cast<cPacket*>(msg);

if (detectRansomware(pkt)) {

ransomwareIndicators++;

if (ransomwareIndicators >= threshold) {

EV << “Ransomware detected!” << endl;

raiseAlert();

}

}

delete pkt;  // Clean up the packet

}

 

bool detectRansomware(cPacket *pkt) {

// Implement detection logic based on packet characteristics

if (strcmp(pkt->getName(), “ransomwareActivity”) == 0) {

return true;

}

// Add additional detection criteria as needed

return false;

}

void raiseAlert() {

// Implement alert mechanism (e.g., notify other nodes, log event)

EV << “Alert: Potential ransomware activity detected!” << endl;

}

};

  1. Analyze Detection Accuracy and Performance:
    • After running the simulation, measure the detection performance by validating the number of false positives, false negatives, and true positives.
    • Modify/adjust the detection thresholds or logic to enhance accuracy.

class RansomwareDetector : public cSimpleModule {

private:

int ransomwareIndicators = 0;

int threshold = 10;

int falsePositives = 0;

int falseNegatives = 0;

int truePositives = 0;

protected:

virtual void finish() override {

// Record detection performance

recordScalar(“False Positives”, falsePositives);

recordScalar(“False Negatives”, falseNegatives);

recordScalar(“True Positives”, truePositives);

EV << “False Positives: ” << falsePositives << endl;

EV << “False Negatives: ” << falseNegatives << endl;

EV << “True Positives: ” << truePositives << endl;

}

 

// adjust detectRansomware and raiseAlert methods to update falsePositives, falseNegatives, and truePositives counters

};

  1. Simulate and Evaluate the Ransomware Detection:
    • Run simulation with varying levels of network traffic and various kinds of ransomware behavior.
    • Measure the efficiency of ransomware detection by inspecting the loggedoutcomes and making modification is essential.

As we discussed earlier about how the ransomeware detection will perform in OMNeT++ tool and also we offer the information on how the ransomware detection will perform in other simulation tool.

We give outstanding guidance and assistance in implementing Ransomware Detection in OMNeT++ applications. Visit omnet-manual.com for additional excellent project execution tips from our researchers!

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .