To implement QoS-aware clustering in OMNeT++ has encompasses to grouping nodes into clusters based on Quality of Service (QoS) requirements and make sure that data transmission within and among the clusters meets the particular QoS criteria. QoS-aware clustering is especially helpful in wireless sensor networks (WSNs), IoT networks, and mobile ad hoc networks (MANETs) where resources such as bandwidth, energy, and delay need to be enhanced.
Receive unparalleled implementation support for QoS-aware clustering within the OMNeT++ tool from our distinguished team. We also offer a wealth of project topic ideas related to traffic congestion, along with expert guidance in network analysis.
The below are the steps to implement the QoS-aware clustering in OMNeT++:
Steps to Implement QoS-aware Clustering in OMNeT++
Example: Implementing a Basic QoS-aware Clustering Algorithm
// QoSAwareClusteringNetwork.ned
package networkstructure;
import inet.node.inet.StandardHost;
network QoSAwareClusteringNetwork
{
submodules:
node[10]: StandardHost {
@display(“p=100,100”);
numApps = 1;
app[0].typename = “QoSAwareClusteringNode”;
}
}
Generate a C++ class for a simple QoS-aware clustering algorithm. This sample uses a simplified QoS metric based on energy and delay.
#include <omnetpp.h>
#include <inet/applications/base/ApplicationBase.h>
using namespace omnetpp;
using namespace inet;
class QoSAwareClusteringNode : public ApplicationBase
{
protected:
bool isClusterHead;
double energyLevel;
double delayRequirement;
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void joinCluster();
void formCluster();
double calculateQoSMetric();
public:
virtual int numInitStages() const override { return NUM_INIT_STAGES; }
};
Define_Module(QoSAwareClusteringNode);
void QoSAwareClusteringNode::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_APPLICATION_LAYER) {
isClusterHead = false;
energyLevel = par(“initialEnergy”).doubleValue();
delayRequirement = par(“delayRequirement”).doubleValue();
// Decide whether to become a cluster head based on QoS metrics
if (calculateQoSMetric() > par(“qosThreshold”).doubleValue()) {
formCluster();
} else {
joinCluster();
}
}
}
void QoSAwareClusteringNode::handleMessageWhenUp(cMessage *msg)
{
// Handle cluster-related messages (e.g., joining requests, data forwarding)
delete msg;
}
void QoSAwareClusteringNode::joinCluster()
{
EV << “Joining a cluster based on QoS metrics.” << endl;
// Logic to join an existing cluster, sending a request to the nearest CH
}
void QoSAwareClusteringNode::formCluster()
{
EV << “Forming a cluster as the Cluster Head (CH).” << endl;
isClusterHead = true;
// Logic to form a cluster and accept joining requests from other nodes
}
double QoSAwareClusteringNode::calculateQoSMetric()
{
// Example QoS metric: combination of energy level and delay requirement
return energyLevel / delayRequirement;
}
Expand the node modules to contains the clustering application.
simple StandardHost extends inet.node.inet.StandardHost
{
parameters:
@display(“i=device/sensor”);
numApps = 1;
app[0].typename = “QoSAwareClusteringNode”;
}
network = networkstructure.QoSAwareClusteringNetwork
sim-time-limit = 100s
# Clustering node settings
**.node*.app[0].initialEnergy = 100J;
**.node*.app[0].delayRequirement = 0.1s;
**.node*.app[0].qosThreshold = 10.0; # QoS threshold for cluster head selection
Running the Simulation
Extending the Example
In the end of the module, we clearly learn about how the QoS aware clustering performance in the OMNeT++ tool that provides the enhanced resources over the network. If you need more details about the QOs aware clustering we will provide that too.