e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

How to Implement Public Key Cryptography in OMNeT++

To implement public key cryptography in OMNeT++ has needs to emulate the encryption and decryption processes using public and private keys to secure interaction among network nodes. The Public key cryptography is often used for secure data exchange, digital signatures, and key exchange mechanisms. For all types of implementation needs we ae ready to help you with best results.  The below are the procedures on how to implement the public key cryptography in OMNeT++:

Steps to Implement Public Key Cryptography in OMNeT++

  1. Set up the Network Environment

Initiate by define the simple network topology where nodes will interact using public key cryptography. The topology might include:

  • Client Nodes: These nodes will encode information with the recipient’s public key.
  • Server Nodes: These nodes will decode the received data using their private key.
  • A Key Distribution Centre (KDC): Optionally, this can be included to handle and distribute public keys.

Network Topology Setup:

Describe the simple modules for the network:

simple ClientNode

{

parameters:

@display(“i=block/pc”);

gates:

inout ethg;

}

simple ServerNode

{

parameters:

@display(“i=block/server”);

gates:

inout ethg;

}

simple KeyDistributionCenter

{

parameters:

@display(“i=block/key”);

gates:

inout ethg;

}

network PKCNetwork

{

submodules:

client: ClientNode;

server: ServerNode;

kdc: KeyDistributionCenter;

connections:

client.ethg <–> server.ethg;

client.ethg <–> kdc.ethg;

server.ethg <–> kdc.ethg;

}

  1. Implement Public Key Distribution

Before secure interaction can occur, clients and servers essential to exchange or retrieve each other’s public keys. This can be completed via a Key Distribution Center (KDC) or direct exchange.

Key Distribution Center (KDC) Logic:

class KeyDistributionCenter : public cSimpleModule {

private:

std::map<std::string, std::string> publicKeys; // Mapping of node ID to public key

protected:

virtual void initialize() override {

// Initialize public keys for clients and servers (for simplicity, using strings here)

publicKeys[“client”] = “publicKeyClient”;

publicKeys[“server”] = “publicKeyServer”;

}

virtual void handleMessage(cMessage *msg) override {

cPacket *pkt = check_and_cast<cPacket*>(msg);

std::string requester = pkt->par(“requester”).stringValue();

std::string requestedKey = getPublicKey(requester);

// Respond with the requested public key

cPacket *response = new cPacket(“KeyResponse”);

response->addPar(“publicKey”) = requestedKey;

send(response, “ethg$o”);

}

std::string getPublicKey(const std::string &nodeId) {

return publicKeys[nodeId];

}

};

  1. Implement Public Key Encryption and Decryption

The client encoded the information using the server’s public key, and the server decodes it using its private key.

  1. Client Encryption Logic:

class ClientNode : public cSimpleModule {

private:

std::string serverPublicKey;

protected:

virtual void initialize() override {

// Request server’s public key from the KDC

requestServerPublicKey();

}

virtual void handleMessage(cMessage *msg) override {

cPacket *pkt = check_and_cast<cPacket*>(msg);

if (strcmp(pkt->getName(), “KeyResponse”) == 0) {

serverPublicKey = pkt->par(“publicKey”).stringValue();

EV << “Received server’s public key: ” << serverPublicKey << endl;

encryptAndSendData();

} else {

// Handle other messages

}

delete pkt;

}

void requestServerPublicKey() {

cPacket *request = new cPacket(“KeyRequest”);

request->addPar(“requester”) = “client”;

send(request, “ethg$o”);

}

void encryptAndSendData() {

std::string data = “SensitiveData”;

std::string encryptedData = encryptData(data, serverPublicKey);

cPacket *dataPacket = new cPacket(“EncryptedData”);

dataPacket->addPar(“data”) = encryptedData;

send(dataPacket, “ethg$o”);

}

std::string encryptData(const std::string &data, const std::string &key) {

// Simple XOR encryption for demonstration

std::string encryptedData = data;

for (size_t i = 0; i < data.size(); ++i) {

encryptedData[i] ^= key[i % key.size()];

}

return encryptedData;

}

};

  1. Server Decryption Logic:

class ServerNode : public cSimpleModule {

private:

std::string privateKey = “privateKeyServer”; // Server’s private key

protected:

virtual void handleMessage(cMessage *msg) override {

cPacket *pkt = check_and_cast<cPacket*>(msg);

if (strcmp(pkt->getName(), “EncryptedData”) == 0) {

std::string encryptedData = pkt->par(“data”).stringValue();

std::string decryptedData = decryptData(encryptedData, privateKey);

EV << “Received and decrypted data: ” << decryptedData << endl;

}

delete pkt;

}

std::string decryptData(const std::string &data, const std::string &key) {

// Simple XOR decryption (same as encryption in this case)

std::string decryptedData = data;

for (size_t i = 0; i < data.size(); ++i) {

decryptedData[i] ^= key[i % key.size()];

}

return decryptedData;

}

};

  1. Simulate and Evaluate the Public Key Cryptography

Run simulations to measure the performance of the public key cryptography implementation:

  • Verify Correctness: Make certain that the client successfully encodes the information with the server’s public key and that the server appropriately decodes it with its private key.
  • Measure Performance: Measure the time it takes for encryption and decryption and how it affects the interaction delay.
  • Test Key Distribution: Make sure that the public keys are appropriately shared by the KDC and used by the client.
  1. Enhance Security and Realism

To further improve the implementation:

  • Use Real Cryptographic Algorithms: Replace the basic XOR encryption with real cryptographic libraries such as OpenSSL for RSA encryption and decryption.
  • Simulate Key Management: Execute more sophisticated key management protocols, have several key revocation, expiration, and renewal.
  • Handle Larger Scenarios: Expand the network topology to conclude the multiple clients and servers, and emulate a realistic public key infrastructure (PKI).

In this module, we had demonstrated how to execute the public key cryptography in OMNeT++ tool that provides secure interaction among the network. Additional specific details regarding the public key cryptography will be provided

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .