To implement Network Threat Intelligence in OMNeT++ has several steps that include emulating the detection, analysis, and response to probable network threats. The Network Threat Intelligence is vital for improving the security posture of a network by provided that comprehensions into potential threats and vulnerabilities. Get your implementation done by our team in an effective way. The following are the structured procedure to implement the Network Threat Intelligence in OMNeT++:
Step-by-Step Implementation:
Example NED file:
network ThreatIntelligenceNetwork
{
submodules:
host1: StandardHost;
host2: StandardHost;
router1: Router;
securityAppliance: StandardHost; // This node will implement threat intelligence
threatIntelligenceServer: StandardHost;
connections:
host1.ethg++ <–> EthLink <–> router1.ethg++;
host2.ethg++ <–> EthLink <–> router1.ethg++;
router1.ethg++ <–> EthLink <–> securityAppliance.ethg++;
securityAppliance.ethg++ <–> EthLink <–> threatIntelligenceServer.ethg++;
}
Example intrusion detection implementation:
class IntrusionDetection : public cSimpleModule {
protected:
virtual void initialize() override {
// Initialize intrusion detection parameters
scheduleAt(simTime() + uniform(1, 5), new cMessage(“checkTraffic”));
}
virtual void handleMessage(cMessage *msg) override {
if (msg->isSelfMessage()) {
checkNetworkTraffic();
scheduleAt(simTime() + uniform(1, 5), msg);
}
}
void checkNetworkTraffic() {
// Simulate traffic analysis
if (uniform(0, 1) < 0.05) { // 5% chance of detecting an intrusion
EV << “Intrusion detected!” << endl;
sendAlert(“IntrusionDetected”);
}
}
void sendAlert(const char *eventType) {
cMessage *alert = new cMessage(eventType);
send(alert, “out”);
}
};
Define_Module(IntrusionDetection);
Example threat intelligence server logic:
class ThreatIntelligenceServer : public cSimpleModule {
protected:
virtual void initialize() override {
// Initialize threat intelligence server
EV << “Threat Intelligence Server initialized.” << endl;
}
virtual void handleMessage(cMessage *msg) override {
EV << “Threat alert received: ” << msg->getName() << endl;
processThreat(msg->getName());
delete msg;
}
void processThreat(const char *threatType) {
// Example: Correlate with other data sources and score the threat
int threatScore = correlateAndScoreThreat(threatType);
EV << “Threat scored: ” << threatScore << endl;
if (threatScore > 75) {
triggerResponse(threatType);
}
}
int correlateAndScoreThreat(const char *threatType) {
// Example logic for scoring a threat
if (strcmp(threatType, “IntrusionDetected”) == 0) {
return 80; // High threat score for intrusion
}
return 50; // Medium threat score for other threats
}
void triggerResponse(const char *threatType) {
EV << “Triggering response for ” << threatType << endl;
// Implement response actions like blocking traffic or alerting admins
}
};
Define_Module(ThreatIntelligenceServer);
Example threat simulation (DDoS attack):
class DDoSSimulator : public cSimpleModule {
protected:
virtual void initialize() override {
scheduleAt(simTime() + uniform(10, 20), new cMessage(“launchDDoS”));
}
virtual void handleMessage(cMessage *msg) override {
if (msg->isSelfMessage()) {
launchDDoSAttack();
delete msg;
}
}
void launchDDoSAttack() {
for (int i = 0; i < 1000; i++) {
cPacket *pkt = new cPacket(“DDoSPacket”);
send(pkt, “out”);
}
}
};
Define_Module(DDoSSimulator);
Example logging logic:
void ThreatIntelligenceServer::logThreat(const char *threatType, int score) {
EV << “Threat logged: ” << threatType << ” with score ” << score << ” at ” << simTime() << endl;
recordScalar(threatType, score);
}
Example .ini file configuration:
network = ThreatIntelligenceNetwork
sim-time-limit = 300s
**.host*.app[0].typename = “IntrusionDetection”
**.securityAppliance.app[0].typename = “IntrusionDetection”
**.threatIntelligenceServer.app[0].typename = “ThreatIntelligenceServer”
**.attacker.app[0].typename = “DDoSSimulator”
**.threatIntelligenceServer.app[0].logThreat = true
**.threatIntelligenceServer.app[0].recordScalar = true
Example Python script for analysing threat intelligence data:
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv(‘results/scalars.csv’)
threat_scores = data[data[‘name’].str.contains(‘ThreatScore’)][‘value’]
plt.hist(threat_scores, bins=50)
plt.xlabel(‘Threat Score’)
plt.ylabel(‘Frequency’)
plt.title(‘Distribution of Threat Scores’)
plt.show()
Example of integrating a simple anomaly detection model:
void ThreatIntelligenceServer::detectAnomalies() {
// Example anomaly detection logic
double anomalyScore = calculateAnomalyScore();
if (anomalyScore > threshold) {
EV << “Anomaly detected with score: ” << anomalyScore << endl;
triggerResponse(“AnomalyDetected”);
}
}
double ThreatIntelligenceServer::calculateAnomalyScore() {
// Dummy logic; replace with actual model
return uniform(0, 100);
}
Additional Considerations:
From this module, we had known how to detect the vulnerable attacks in the network using the network threat intelligence characteristics in the OMNeT++ simulation. Additional specific details regarding the network threat intelligence will also be provided.