To implement the network threat detection in OMNeT++ has needs to design and emulate the network that can observe the traffic for malevolent activities or policy violations. This process contains to monitor the network packets then evaluate the traffic patterns then identify the malevolent and logging or responding the threats. Here, we provide the procedure to execute the network threat detection in OMNeT++ using the INET framework:
Step-by-Step Implementation
Make sure we have OMNeT++ and the INET Framework installed.
Generate a new NED file to describe network topology that contains hosts, routers, and a threat detection node.
Example: Threat Detection Network Topology (ThreatDetectionNetwork.ned)
package threatdetectionnetwork;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
network ThreatDetectionNetwork
{
parameters:
@display(“bgb=800,400”);
submodules:
host1: StandardHost {
@display(“p=100,200”);
}
host2: StandardHost {
@display(“p=300,200”);
}
router: Router {
@display(“p=200,100”);
}
threatDetection: StandardHost {
@display(“p=200,300”);
}
connections allowunconnected:
host1.ethg++ <–> Eth10M <–> router.ethg++;
host2.ethg++ <–> Eth10M <–> router.ethg++;
threatDetection.ethg++ <–> Eth10M <–> router.ethg++;
}
Generate an OMNeT++ initialization file to configure the parameters of the simulation.
Example: Configuration File (omnetpp.ini)
network = threatdetectionnetwork.ThreatDetectionNetwork
sim-time-limit = 200s
# Visualization
*.visualizer.canvasVisualizer.displayBackground = true
*.visualizer.canvasVisualizer.displayGrid = true
# Host Configuration
*.host*.numApps = 1
*.host*.app[0].typename = “UdpBasicApp”
*.host*.app[0].destAddresses = “host2”
*.host*.app[0].destPort = 5000
*.host*.app[0].messageLength = 1024B
*.host*.app[0].sendInterval = 1s
# Threat Detection Configuration
*.threatDetection.numApps = 1
*.threatDetection.app[0].typename = “ThreatDetectionApp”
# IP Address Configuration
*.host1.ipv4.config = xmldoc(“host1.xml”)
*.host2.ipv4.config = xmldoc(“host2.xml”)
*.router.ipv4.config = xmldoc(“router.xml”)
*.threatDetection.ipv4.config = xmldoc(“threatDetection.xml”)
Create XML files to outline the IP address configuration for each node.
Example: IP Configuration File for host1 (host1.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.1</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for host2 (host2.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.2</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for router (router.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.254</address>
<netmask>255.255.255.0</netmask>
</interface>
<interface>
<name>eth1</name>
<address>10.0.0.1</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for threatDetection (threatDetection.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.100</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
To emulate the threat detection characteristics to execute an application that observes network traffic for suspicious activities and logs or responds to incidents.
Example: Threat Detection Application (Pseudo-Code)
#include <omnetpp.h>
#include <inet/applications/udpapp/UdpBasicApp.h>
#include <fstream>
using namespace omnetpp;
using namespace inet;
class ThreatDetectionApp : public UdpBasicApp
{
protected:
std::ofstream logFile;
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void monitorTraffic(cMessage *msg);
void logIncident(const std::string &incident);
void detectThreats(cMessage *msg);
};
Define_Module(ThreatDetectionApp);
void ThreatDetectionApp::initialize(int stage) {
UdpBasicApp::initialize(stage);
if (stage == INITSTAGE_APPLICATION_LAYER) {
logFile.open(“threat_log.txt”);
}
}
void ThreatDetectionApp::handleMessageWhenUp(cMessage *msg) {
monitorTraffic(msg);
UdpBasicApp::handleMessageWhenUp(msg);
}
void ThreatDetectionApp::monitorTraffic(cMessage *msg) {
// Monitor traffic and detect threats
detectThreats(msg);
}
void ThreatDetectionApp::detectThreats(cMessage *msg) {
// Implement threat detection logic
// Example: detect high traffic volume or specific patterns
if (strcmp(msg->getName(), “udpPacket”) == 0) {
// Analyze the packet content
// If suspicious activity is detected, log the incident
logIncident(“Suspicious packet detected: ” + std::string(msg->getName()));
}
}
void ThreatDetectionApp::logIncident(const std::string &incident) {
// Log the incident details to a file
logFile << incident << ” at ” << simTime() << “\n”;
}
Hosts can also log specific events and send logs to the threat detection node.
Example: Host Application with Logging (Pseudo-Code)
#include <omnetpp.h>
#include <inet/applications/udpapp/UdpBasicApp.h>
#include <fstream>
using namespace omnetpp;
using namespace inet;
class LoggingHostApp : public UdpBasicApp
{
protected:
std::ofstream logFile;
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void logEvent(const std::string &event);
};
Define_Module(LoggingHostApp);
void LoggingHostApp::initialize(int stage) {
UdpBasicApp::initialize(stage);
if (stage == INITSTAGE_APPLICATION_LAYER) {
logFile.open(“host_log.txt”);
}
}
void LoggingHostApp::handleMessageWhenUp(cMessage *msg) {
// Log specific events
logEvent(“Sending packet: ” + std::string(msg->getName()));
UdpBasicApp::handleMessageWhenUp(msg);
}
void LoggingHostApp::logEvent(const std::string &event) {
// Log the event details to a file
logFile << event << ” at ” << simTime() << “\n”;
}
In this above script, we all know and understand how the network threat detection will identify and evaluate the unnecessary threats in the network. Further details regarding the implementation of the network threat detection in diverse simulations will be provided.
Network threat detection involves the continuous monitoring and assessment of traffic patterns to identify potential threats, get more help from us on utilizing the OMNeT++ tool for implementation and simulation assistance.