To implement the network encryption in OMNeT++ has needs to design and emulate the network that uses the cryptographic algorithms to secure communications. This contains encrypting and decrypting data as it is conveyed among network nodes. Here, we provide the detailed procedures on how to implement the network encryption in OMNeT++ using the INET framework:
Step-by-Step Implementation
Make sure we have OMNeT++ and the INET Framework installed.
Generate a new NED file to describe network topology has contains hosts and routers.
Example: Network Encryption Topology (NetworkEncryptionNetwork.ned)
package networkencryption;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
network NetworkEncryptionNetwork
{
parameters:
@display(“bgb=800,400”);
submodules:
host1: StandardHost {
@display(“p=100,200”);
}
host2: StandardHost {
@display(“p=300,200”);
}
router: Router {
@display(“p=200,100”);
}
connections allowunconnected:
host1.ethg++ <–> Eth10M <–> router.ethg++;
host2.ethg++ <–> Eth10M <–> router.ethg++;
}
Generate an OMNeT++ initialization file to configure the parameters of the simulation.
Example: Configuration File (omnetpp.ini)
network = networkencryption.NetworkEncryptionNetwork
sim-time-limit = 200s
# Visualization
*.visualizer.canvasVisualizer.displayBackground = true
*.visualizer.canvasVisualizer.displayGrid = true
# Host Configuration
*.host*.numApps = 1
*.host*.app[0].typename = “CryptoApp”
*.host*.app[0].destAddresses = “host2”
*.host*.app[0].destPort = 5000
*.host*.app[0].messageLength = 1024B
*.host*.app[0].sendInterval = 1s
# Router Configuration
*.router.numPorts = 2
# IP Address Configuration
*.host1.ipv4.config = xmldoc(“host1.xml”)
*.host2.ipv4.config = xmldoc(“host2.xml”)
*.router.ipv4.config = xmldoc(“router.xml”)
Create XML files to define the IP address configuration for each node.
Example: IP Configuration File for host1 (host1.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.1</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for host2 (host2.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.2</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
Example: IP Configuration File for router (router.xml)
<config>
<interface>
<name>eth0</name>
<address>192.168.1.254</address>
<netmask>255.255.255.0</netmask>
</interface>
<interface>
<name>eth1</name>
<address>10.0.0.1</address>
<netmask>255.255.255.0</netmask>
</interface>
</config>
To emulate cryptographic operations, execute custom applications that manage encryption and decryption.
Example: Cryptographic Application (Pseudo-Code)
#include <omnetpp.h>
#include <inet/applications/udpapp/UdpBasicApp.h>
#include <cryptopp/cryptlib.h>
#include <cryptopp/aes.h>
#include <cryptopp/filters.h>
#include <cryptopp/modes.h>
#include <cryptopp/osrng.h>
#include <sstream>
using namespace omnetpp;
using namespace inet;
using namespace CryptoPP;
class CryptoApp : public UdpBasicApp
{
protected:
SecByteBlock key;
byte iv[AES::BLOCKSIZE];
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void encryptAndSend(cMessage *msg);
void receiveAndDecrypt(cMessage *msg);
};
Define_Module(CryptoApp);
void CryptoApp::initialize(int stage) {
UdpBasicApp::initialize(stage);
if (stage == INITSTAGE_APPLICATION_LAYER) {
AutoSeededRandomPool prng;
key = SecByteBlock(AES::DEFAULT_KEYLENGTH);
prng.GenerateBlock(key, key.size());
prng.GenerateBlock(iv, sizeof(iv));
}
}
void CryptoApp::handleMessageWhenUp(cMessage *msg) {
if (msg->isSelfMessage()) {
encryptAndSend(msg);
} else {
receiveAndDecrypt(msg);
}
UdpBasicApp::handleMessageWhenUp(msg);
}
void CryptoApp::encryptAndSend(cMessage *msg) {
std::string plaintext = “This is a secret message”;
std::string ciphertext;
try {
CBC_Mode<AES>::Encryption encryption;
encryption.SetKeyWithIV(key, key.size(), iv);
StringSource(plaintext, true,
new StreamTransformationFilter(encryption,
new StringSink(ciphertext)
)
);
msg->setName(ciphertext.c_str());
send(msg, “out”);
} catch (const CryptoPP::Exception &e) {
EV << “Encryption error: ” << e.what() << “\n”;
}
}
void CryptoApp::receiveAndDecrypt(cMessage *msg) {
std::string ciphertext = msg->getName();
std::string decryptedtext;
try {
CBC_Mode<AES>::Decryption decryption;
decryption.SetKeyWithIV(key, key.size(), iv);
StringSource(ciphertext, true,
new StreamTransformationFilter(decryption,
new StringSink(decryptedtext)
)
);
EV << “Decrypted text: ” << decryptedtext << “\n”;
} catch (const CryptoPP::Exception &e) {
EV << “Decryption error: ” << e.what() << “\n”;
}
delete msg;
}
Note: This example uses the Crypto++ library for cryptographic operations. We need to install and link the Crypto++ library with your OMNeT++ project.
Analyzing Results
To secure the communication in the network uses the cryptographic algorithms to ensure the packets that were implemented using the OMNeT++ tool. We plan to elaborate on the network encryption procedure in other simulation scenarios.
We have presented some solid implementation ideas aimed at enhancing the factual and simulated Network Encryption in OMNeT++. Stay connected with us for additional simulation insights and project performance outcomes. We continue to work on encrypting and decrypting data, so feel free to send us your research details via email, and we’ll be happy to assist you further.