To implement the network edge intelligence in OMNeT++ encompasses incorporating intelligent processing capabilities at the edge of the network, close to the data sources or end-users. It can support in decreasing latency, enhancing bandwidth usage, improving security, and permitting real-time decision-making by processing data locally sooner than sending it to centralized cloud servers. Below is a step-by-step process to executing network edge intelligence in OMNeT++:
Step-by-Step Implementations:
Example .ned file:
network EdgeIntelligenceNetwork {
submodules:
sensor1: StandardHost {
@display(“p=100,200”);
}
sensor2: StandardHost {
@display(“p=100,300”);
}
edgeServer: StandardHost {
@display(“p=300,250”);
}
cloudServer: StandardHost {
@display(“p=500,250”);
}
router: Router {
@display(“p=200,150”);
}
connections:
sensor1.ethg++ <–> Ethernet100M <–> edgeServer.ethg++;
sensor2.ethg++ <–> Ethernet100M <–> edgeServer.ethg++;
edgeServer.ethg++ <–> Ethernet1G <–> router.pppg++;
router.pppg++ <–> Ethernet1G <–> cloudServer.ethg++;
}
This network contains sensors like edge devices, an edge server, a central cloud server, and a router that connects the edge server to the cloud.
3.1 Data Filtering and Aggregation
Example edge server implementation:
class EdgeIntelligence : public cSimpleModule {
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
void processData(cMessage *msg);
};
void EdgeIntelligence::initialize() {
// Initialization code, if necessary
}
void EdgeIntelligence::handleMessage(cMessage *msg) {
processData(msg);
}
void EdgeIntelligence::processData(cMessage *msg) {
// Example: Filter data based on some criteria
if (std::string(msg->getName()).find(“important”) != std::string::npos) {
// Forward important data to the cloud server
send(msg, “out”);
} else {
// Aggregate or discard less important data
EV << “Aggregating or discarding data: ” << msg->getName() << endl;
delete msg; // Discard the message
}
}
This instance strains incoming data, forwarding only significant data to the cloud server, whereas aggregating or discarding the rest.
3.2 Local Decision-Making
Example of local decision-making:
void EdgeIntelligence::processData(cMessage *msg) {
// Example: If data indicates an emergency, trigger a local alert
if (std::string(msg->getName()).find(“emergency”) != std::string::npos) {
EV << “Emergency detected! Triggering local alert.” << endl;
cMessage *alert = new cMessage(“localAlert”);
send(alert, “out”);
} else {
// Process other data as usual
send(msg, “out”);
}
}
This instance activates a local alert if the data shows an emergency, showcasing edge intelligence by allowing rapid responses.
3.3 Machine Learning Inference
Example of machine learning inference:
void EdgeIntelligence::processData(cMessage *msg) {
// Example: Use a simple decision tree to classify data
if (std::string(msg->getName()).find(“typeA”) != std::string::npos) {
EV << “Classified as Type A data.” << endl;
// Perform some action for Type A
} else if (std::string(msg->getName()).find(“typeB”) != std::string::npos) {
EV << “Classified as Type B data.” << endl;
// Perform some action for Type B
} else {
EV << “Unknown data type.” << endl;
// Handle unknown data
}
}
This sample mimics a basic decision tree classifier at the edge server.
Example of traffic generation configuration:
*.sensor1.numApps = 1
*.sensor1.app[0].typename = “UdpBasicApp”
*.sensor1.app[0].destAddress = “edgeServer”
*.sensor1.app[0].destPort = 1234
*.sensor1.app[0].sendInterval = 1s
*.sensor1.app[0].messageLength = 500B
*.sensor2.numApps = 1
*.sensor2.app[0].typename = “UdpBasicApp”
*.sensor2.app[0].destAddress = “edgeServer”
*.sensor2.app[0].destPort = 1234
*.sensor2.app[0].sendInterval = 1s
*.sensor2.app[0].messageLength = 500B
This outline sets up the sensors to send data to the edge server for processing.
We are effectively implemented the network Edge Intelligence in OMNeT++ using the step-by-step procedure. We will provided additional informations regarding this topic as needed.
Implement Network Edge Intelligence in your OMNeT++ projects with our help. Reach out to omnet-manual.com for expert guidance. Our researchers can provide you with project ideas and insights on simulation performance related to Network Edge Intelligence. We focus on reducing latency, improving bandwidth efficiency, enhancing security, and enabling real-time decision-making for your projects.