To implement the network data fusion in OMNeT++ has encompasses merging data from multiple sources like sensors to give a more precise, reliable, or complete result than any one data source might offer. It is usually used in IoT systems, distributed systems, and sensor networks where numerous nodes gather data that wants to be combined or fused for decision-making. Given below is a approaches on how to executing network data fusion in OMNeT++ using the INET framework:
Step-by-Step Implementations:
Form a network topology that contains several sensor nodes and a central node or nodes responsible for combining the data gathered by the sensors.
Example NED File (DataFusionNetwork.ned):
package mynetwork;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
network DataFusionNetwork
{
parameters:
int numSensors = default(5); // Number of sensor nodes
submodules:
fusionCenter: StandardHost {
@display(“p=500,300”);
}
sensor[numSensors]: StandardHost {
@display(“p=100,100;is=square,red”);
}
router: Router {
@display(“p=300,300”);
}
connections allowunconnected:
for i=0..numSensors-1 {
sensor[i].pppg++ <–> ethernetLine <–> router.pppg++;
}
router.pppg++ <–> ethernetLine <–> fusionCenter.pppg++;
}
In this example:
For processing, each sensor node would gather data and send it to the fusion centre. The data can be basic like temperature readings or complex such as video frames.
Example: Simple Data Collection and Transmission (C++)
#include “inet/common/INETDefs.h”
#include “inet/applications/base/ApplicationBase.h”
#include “inet/applications/udpapp/UdpBasicApp.h”
Define_Module(SensorNode);
void SensorNode::initialize(int stage) {
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_LOCAL) {
dataCollectionInterval = par(“dataCollectionInterval”).doubleValue();
scheduleAt(simTime() + dataCollectionInterval, collectDataTimer);
}
}
void SensorNode::handleMessageWhenUp(cMessage *msg) {
if (msg == collectDataTimer) {
collectAndSendData();
scheduleAt(simTime() + dataCollectionInterval, collectDataTimer);
} else {
ApplicationBase::handleMessageWhenUp(msg);
}
}
void SensorNode::collectAndSendData() {
double sensorReading = uniform(0, 100); // Simulate a sensor reading
EV << “Sensor reading: ” << sensorReading << “\n”;
// Create a packet with the sensor data
auto packet = new cPacket(“SensorData”);
packet->addPar(“sensorValue”) = sensorReading;
// Send the data to the fusion center
send(packet, “pppg$o”);
}
In this example:
The fusion logic can be as simple as close to the values or as difficult as executing Kalman filtering or other advanced methods. The fusion center obtains data from numerous sensors, processes it, and gives a fused result.
Example: Basic Data Fusion Logic (C++)
#include “inet/common/INETDefs.h”
#include “inet/applications/base/ApplicationBase.h”
#include “inet/applications/udpapp/UdpBasicApp.h”
Define_Module(FusionCenter);
void FusionCenter::initialize(int stage) {
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_LOCAL) {
numSensors = par(“numSensors”).intValue();
sensorDataSum = 0;
sensorDataCount = 0;
}
}
void FusionCenter::handleMessageWhenUp(cMessage *msg) {
if (msg->isPacket()) {
handleSensorData(check_and_cast<cPacket *>(msg));
} else {
ApplicationBase::handleMessageWhenUp(msg);
}
}
void FusionCenter::handleSensorData(cPacket *packet) {
double sensorValue = packet->par(“sensorValue”).doubleValue();
sensorDataSum += sensorValue;
sensorDataCount++;
EV << “Received sensor data: ” << sensorValue << “\n”;
// Perform data fusion when data from all sensors is received
if (sensorDataCount == numSensors) {
double fusedData = sensorDataSum / sensorDataCount; // Simple average
EV << “Fused data: ” << fusedData << “\n”;
// Reset for next round of data fusion
sensorDataSum = 0;
sensorDataCount = 0;
// Process or send the fused data to another component
processFusedData(fusedData);
}
delete packet;
}
void FusionCenter::processFusedData(double fusedData) {
// Example: Log the fused data or send it to another node
EV << “Processing fused data: ” << fusedData << “\n”;
}
In this example:
Run the simulation and observe the data fusion process. We can track metrics like the exactness of the fused data, the impact on network load, and the time taken to fuse data.
Example Configuration for Monitoring Metrics:
[General]
network = DataFusionNetwork
**.fusionCenter.fusedData.recordScalar = true
**.fusionCenter.fusionTime.recordScalar = true
This configuration records the fused data and the duration to complete the fusion process.
Examine the results to determine the efficiency of the data fusion strategy, after running the simulation. Consider factors like:
We can extend the simple data fusion strategy with further features like:
Example: Distributed Data Fusion
void IntermediateNode::handleSensorData(cPacket *packet) {
double sensorValue = packet->par(“sensorValue”).doubleValue();
intermediateDataSum += sensorValue;
intermediateDataCount++;
if (intermediateDataCount == numSensorsInCluster) {
double localFusedData = intermediateDataSum / intermediateDataCount;
EV << “Locally fused data: ” << localFusedData << “\n”;
// Send local fused data to the central fusion center
sendLocalFusedData(localFusedData);
// Reset for next round of data fusion
intermediateDataSum = 0;
intermediateDataCount = 0;
}
delete packet;
}
Document the data fusion strategies verified, the results attained, and any optimizations created. It will be supported to knowing the efficiency of various data fusion methods in numerous network situations.
In this setup, we had learned about Network Data fusion, their approaches, techniques, and instances that helps to execute the Data fusion in OMNeT++ using INET framework. We will be given further details based on your requirements.
To implement Network Data Fusion in the OMNeT++ tool, we’re here to provide you with top-notch guidance and personalized support. Additionally, we offer unique topics and ideas, along with comparative analysis assistance.