To implement the network data compression in OMNeT++ has encompasses generating a mechanism where data is compressed before being transferred through the network and decompressed at the getting end. This method is especially helpful for decreasing the amount of data transmitted, saving bandwidth, and enhancing network performance, particularly in resource-constrained environments such as wireless sensor networks (WSNs) or IoT systems. The following is a simple procedure to executing network data compression in OMNeT++ with examples:
Step-by-Step Implementations:
Step 1: Set Up the OMNeT++ Environment
Make sure that OMNeT++ and the INET framework are installed and configured correctly. INET offers tools for mimicking several networking scenarios, which we can extend to contain data compression functionality.
Step 2: Define the Wireless Node with Data Compression Capability
State a wireless node that can compress data before transmission and decompress data upon receipt. The wireless node will use the INET framework’s wireless models but will be expanded to contain data compression and decompression mechanisms.
Example Node Definition
module WirelessNodeWithDataCompression
{
parameters:
@display(“i=block/wifilaptop”); // Icon for visualization
gates:
inout wlan; // Wireless communication gate
submodules:
wlan: <default(“Ieee80211Nic”)>; // Wireless NIC for communication
mobility: <default(“MassMobility”)>; // Mobility module for movement
compressor: DataCompressor; // Module for data compression
decompressor: DataDecompressor; // Module for data decompression
connections:
wlan.radioIn <–> wlan.radioIn; // Connect the wireless gate to the NIC
wlan.radioIn <–> compressor.wlanIn; // Connect NIC to Compressor
wlan.radioIn <–> decompressor.wlanIn; // Connect NIC to Decompressor
}
Step 3: Implement the Data Compression and Decompression Logic
To execute the logic for compressing and decompressing data. We can use a basic compression algorithm such as Run-Length Encoding (RLE) for demonstration purposes. In a real-world situation, more difficult algorithms like Huffman coding, LZ77, or Deflate can be used.
Example Data Compression Logic
class DataCompressor : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
std::string compressData(const std::string& data);
private:
double compressionRatio; // Example compression ratio
};
void DataCompressor::initialize()
{
compressionRatio = par(“compressionRatio”); // Example compression ratio
}
void DataCompressor::handleMessage(cMessage *msg)
{
// Example: Extract data from the message and compress it
std::string originalData = msg->par(“data”).stringValue();
std::string compressedData = compressData(originalData);
// Replace original data with compressed data
msg->par(“data”) = compressedData.c_str();
// Forward the message
send(msg, “wlanOut”);
}
std::string DataCompressor::compressData(const std::string& data)
{
// Example: Simple Run-Length Encoding (RLE)
std::ostringstream compressed;
char lastChar = data[0];
int count = 1;
for (size_t i = 1; i < data.size(); i++) {
if (data[i] == lastChar) {
count++;
} else {
compressed << lastChar << count;
lastChar = data[i];
count = 1;
}
}
compressed << lastChar << count;
// Simulate compression by reducing the size of the data based on the compression ratio
std::string compressedStr = compressed.str();
int reducedLength = static_cast<int>(compressedStr.size() * compressionRatio);
return compressedStr.substr(0, reducedLength);
}
Example Data Decompression Logic
class DataDecompressor : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
std::string decompressData(const std::string& data);
private:
double compressionRatio; // Example compression ratio for decompression
};
void DataDecompressor::initialize()
{
compressionRatio = par(“compressionRatio”); // Example compression ratio
}
void DataDecompressor::handleMessage(cMessage *msg)
{
// Example: Extract compressed data from the message and decompress it
std::string compressedData = msg->par(“data”).stringValue();
std::string decompressedData = decompressData(compressedData);
// Replace compressed data with decompressed data
msg->par(“data”) = decompressedData.c_str();
// Forward the message
send(msg, “wlanOut”);
}
std::string DataDecompressor::decompressData(const std::string& data)
{
// Example: Reverse the simple RLE compression
std::ostringstream decompressed;
for (size_t i = 0; i < data.size(); i += 2) {
char character = data[i];
int count = data[i + 1] – ‘0’;
decompressed << std::string(count, character);
}
// Simulate decompression by restoring the original size
std::string decompressedStr = decompressed.str();
int restoredLength = static_cast<int>(decompressedStr.size() / compressionRatio);
return decompressedStr.substr(0, restoredLength);
}
Step 4: Define the Network Scenario with Data Compression
Make a network scenario where numerous nodes compress data before transmission and decompress data upon receipt.
Example Network Scenario Definition
network DataCompressionNetwork
{
parameters:
int numNodes = default(5); // Number of nodes in the network
submodules:
nodes[numNodes]: WirelessNodeWithDataCompression {
@display(“p=100,100”);
}
connections allowunconnected:
for i=0..numNodes-2 {
nodes[i].wlan <–> IdealWirelessLink <–> nodes[i+1].wlan;
}
}
Step 5: Configure the Simulation Parameters
Form the simulation parameters in the .ini file, containing the compression ratio, data generation intervals, and other node-specific settings.
Example Configuration in the .ini File
[General]
network = DataCompressionNetwork
sim-time-limit = 300s
# Data Compression Configuration
*.nodes[*].compressor.compressionRatio = 0.5 # Example compression ratio
*.nodes[*].decompressor.compressionRatio = 0.5 # Same ratio for decompression
*.nodes[*].wlan.radio.transmitter.power = 20mW
*.nodes[*].wlan.radio.transmitter.datarate = 54Mbps
*.nodes[*].wlan.radio.receiver.sensitivity = -85dBm
# Data generation intervals
*.nodes[*].app[0].sendInterval = 5s # Interval between generating new data
Step 6: Implement Traffic Generation with Compressible Data
Execute the logic for making data that can be compressed to check the compression and decompression mechanism.
Example Traffic Generation Logic
class TrafficGenerator : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
std::string generateData();
private:
cMessage *sendTimer; // Timer to trigger data generation
};
void TrafficGenerator::initialize()
{
sendTimer = new cMessage(“sendTimer”);
scheduleAt(simTime() + par(“sendInterval”), sendTimer);
}
void TrafficGenerator::handleMessage(cMessage *msg)
{
if (msg == sendTimer)
{
std::string newData = generateData();
cMessage *packet = new cMessage(“DataPacket”);
packet->addPar(“data”) = newData.c_str();
send(packet, “out”);
scheduleAt(simTime() + par(“sendInterval”), sendTimer);
}
else
{
delete msg;
}
}
std::string TrafficGenerator::generateData()
{
// Example: Generate data that has repetitive patterns suitable for compression
return “AAAAABBBBBCCCCCDDDDDEEEEE”; // Example repetitive data
}
Step 7: Run the Simulation
Compile and run the simulation. Monitor how nodes make data, compress it before transmission, and decompress it after receipt.
Step 8: Analyse the Results
To calculate the efficiency of the data compression mechanism by using OMNeT++’s analysis tools. Examine metrics like:
Step 9: Extend the Simulation (Optional)
We can implement the simulation by:
Over this page, we had showed comprehensive informations, step-by-step approaches concerning to execute Network Data Compression by using the tool OMNeT++. We will furnish additional information as per your specifications.
Additional information will be provided in accordance with your needs, so please stay in contact with omnet-manual.com. We are prepared to assist you in achieving successful implementation outcomes.