e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

How to Implement Network Data Compression in OMNeT++

To implement the network data compression in OMNeT++ has encompasses generating a mechanism where data is compressed before being transferred through the network and decompressed at the getting end. This method is especially helpful for decreasing the amount of data transmitted, saving bandwidth, and enhancing network performance, particularly in resource-constrained environments such as wireless sensor networks (WSNs) or IoT systems. The following is a simple procedure to executing network data compression in OMNeT++ with examples:

Step-by-Step Implementations:

Step 1: Set Up the OMNeT++ Environment

Make sure that OMNeT++ and the INET framework are installed and configured correctly. INET offers tools for mimicking several networking scenarios, which we can extend to contain data compression functionality.

Step 2: Define the Wireless Node with Data Compression Capability

State a wireless node that can compress data before transmission and decompress data upon receipt. The wireless node will use the INET framework’s wireless models but will be expanded to contain data compression and decompression mechanisms.

Example Node Definition

module WirelessNodeWithDataCompression

{

parameters:

@display(“i=block/wifilaptop”);  // Icon for visualization

gates:

inout wlan; // Wireless communication gate

submodules:

wlan: <default(“Ieee80211Nic”)>; // Wireless NIC for communication

mobility: <default(“MassMobility”)>; // Mobility module for movement

compressor: DataCompressor; // Module for data compression

decompressor: DataDecompressor; // Module for data decompression

connections:

wlan.radioIn <–> wlan.radioIn; // Connect the wireless gate to the NIC

wlan.radioIn <–> compressor.wlanIn; // Connect NIC to Compressor

wlan.radioIn <–> decompressor.wlanIn; // Connect NIC to Decompressor

}

Step 3: Implement the Data Compression and Decompression Logic

To execute the logic for compressing and decompressing data. We can use a basic compression algorithm such as Run-Length Encoding (RLE) for demonstration purposes. In a real-world situation, more difficult algorithms like Huffman coding, LZ77, or Deflate can be used.

Example Data Compression Logic

class DataCompressor : public cSimpleModule

{

protected:

virtual void initialize() override;

virtual void handleMessage(cMessage *msg) override;

std::string compressData(const std::string& data);

private:

double compressionRatio; // Example compression ratio

};

void DataCompressor::initialize()

{

compressionRatio = par(“compressionRatio”);  // Example compression ratio

}

void DataCompressor::handleMessage(cMessage *msg)

{

// Example: Extract data from the message and compress it

std::string originalData = msg->par(“data”).stringValue();

std::string compressedData = compressData(originalData);

// Replace original data with compressed data

msg->par(“data”) = compressedData.c_str();

// Forward the message

send(msg, “wlanOut”);

}

std::string DataCompressor::compressData(const std::string& data)

{

// Example: Simple Run-Length Encoding (RLE)

std::ostringstream compressed;

char lastChar = data[0];

int count = 1;

for (size_t i = 1; i < data.size(); i++) {

if (data[i] == lastChar) {

count++;

} else {

compressed << lastChar << count;

lastChar = data[i];

count = 1;

}

}

compressed << lastChar << count;

// Simulate compression by reducing the size of the data based on the compression ratio

std::string compressedStr = compressed.str();

int reducedLength = static_cast<int>(compressedStr.size() * compressionRatio);

return compressedStr.substr(0, reducedLength);

}

Example Data Decompression Logic

class DataDecompressor : public cSimpleModule

{

protected:

virtual void initialize() override;

virtual void handleMessage(cMessage *msg) override;

std::string decompressData(const std::string& data);

private:

double compressionRatio; // Example compression ratio for decompression

};

void DataDecompressor::initialize()

{

compressionRatio = par(“compressionRatio”);  // Example compression ratio

}

void DataDecompressor::handleMessage(cMessage *msg)

{

// Example: Extract compressed data from the message and decompress it

std::string compressedData = msg->par(“data”).stringValue();

std::string decompressedData = decompressData(compressedData);

// Replace compressed data with decompressed data

msg->par(“data”) = decompressedData.c_str();

// Forward the message

send(msg, “wlanOut”);

}

std::string DataDecompressor::decompressData(const std::string& data)

{

// Example: Reverse the simple RLE compression

std::ostringstream decompressed;

for (size_t i = 0; i < data.size(); i += 2) {

char character = data[i];

int count = data[i + 1] – ‘0’;

decompressed << std::string(count, character);

}

// Simulate decompression by restoring the original size

std::string decompressedStr = decompressed.str();

int restoredLength = static_cast<int>(decompressedStr.size() / compressionRatio);

return decompressedStr.substr(0, restoredLength);

}

Step 4: Define the Network Scenario with Data Compression

Make a network scenario where numerous nodes compress data before transmission and decompress data upon receipt.

Example Network Scenario Definition

network DataCompressionNetwork

{

parameters:

int numNodes = default(5); // Number of nodes in the network

submodules:

nodes[numNodes]: WirelessNodeWithDataCompression {

@display(“p=100,100”);

}

connections allowunconnected:

for i=0..numNodes-2 {

nodes[i].wlan <–> IdealWirelessLink <–> nodes[i+1].wlan;

}

}

Step 5: Configure the Simulation Parameters

Form the simulation parameters in the .ini file, containing the compression ratio, data generation intervals, and other node-specific settings.

Example Configuration in the .ini File

[General]

network = DataCompressionNetwork

sim-time-limit = 300s

# Data Compression Configuration

*.nodes[*].compressor.compressionRatio = 0.5  # Example compression ratio

*.nodes[*].decompressor.compressionRatio = 0.5  # Same ratio for decompression

*.nodes[*].wlan.radio.transmitter.power = 20mW

*.nodes[*].wlan.radio.transmitter.datarate = 54Mbps

*.nodes[*].wlan.radio.receiver.sensitivity = -85dBm

# Data generation intervals

*.nodes[*].app[0].sendInterval = 5s  # Interval between generating new data

Step 6: Implement Traffic Generation with Compressible Data

Execute the logic for making data that can be compressed to check the compression and decompression mechanism.

Example Traffic Generation Logic

class TrafficGenerator : public cSimpleModule

{

protected:

virtual void initialize() override;

virtual void handleMessage(cMessage *msg) override;

std::string generateData();

private:

cMessage *sendTimer; // Timer to trigger data generation

};

void TrafficGenerator::initialize()

{

sendTimer = new cMessage(“sendTimer”);

scheduleAt(simTime() + par(“sendInterval”), sendTimer);

}

void TrafficGenerator::handleMessage(cMessage *msg)

{

if (msg == sendTimer)

{

std::string newData = generateData();

cMessage *packet = new cMessage(“DataPacket”);

packet->addPar(“data”) = newData.c_str();

send(packet, “out”);

scheduleAt(simTime() + par(“sendInterval”), sendTimer);

}

else

{

delete msg;

}

}

std::string TrafficGenerator::generateData()

{

// Example: Generate data that has repetitive patterns suitable for compression

return “AAAAABBBBBCCCCCDDDDDEEEEE”;  // Example repetitive data

}

Step 7: Run the Simulation

Compile and run the simulation. Monitor how nodes make data, compress it before transmission, and decompress it after receipt.

Step 8: Analyse the Results

To calculate the efficiency of the data compression mechanism by using OMNeT++’s analysis tools. Examine metrics like:

  • Compression Efficiency: Calculate the reduction in data size due to compression.
  • Network Throughput: Monitor how data compression affects complete network throughput.
  • Latency: Assess if data compression introduces any supplementary latency in data transmission and reception.
  • Energy Consumption: If applicable, measure how data compression affects energy consumption, specifically in resource-constrained environments such as WSNs.

Step 9: Extend the Simulation (Optional)

We can implement the simulation by:

  • Implementing More Complex Compression Algorithms: Launch additional sophisticated compression methods such as Huffman coding, LZ77, or Deflate.
  • Simulating Different Data Types: Put on the data compression mechanism to several data types, like multimedia streams, sensor readings, or control signals.
  • Testing in Congested Networks: Mimic a highly congested network to understand if data compression successfully decreases congestion and develops performance.
  • Integrating with QoS: Combine data compression with Quality of Service (QoS) mechanisms to prioritize specific kinds of traffic or make sure that crucial data is transferred with least delay.

Over this page, we had showed comprehensive informations, step-by-step approaches concerning to execute Network Data Compression by using the tool OMNeT++. We will furnish additional information as per your specifications.

Additional information will be provided in accordance with your needs, so please stay in contact with omnet-manual.com. We are prepared to assist you in achieving successful implementation outcomes.

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .