To implement the network analytics in OMNeT++, we need to gather, process and evaluate network data to acquire insights into network performance, identify anomalies, enhance traffic flow and improve whole network efficiency. It is usually contains observing metrics like throughput, latency, packet loss, jitter, and utilization, which are then analyzed to identify patterns, trends, and issues. This set up contains the demonstration steps of Network Analytics in OMNeT++:
Step-by-Step Implementation:
Example .ned file:
network AnalyticsNetwork {
submodules:
client: StandardHost {
@display(“p=100,200”);
}
server: StandardHost {
@display(“p=500,200”);
}
router: Router {
@display(“p=300,150”);
}
connections:
client.ethg++ <–> Ethernet100M <–> router.pppg++;
router.pppg++ <–> Ethernet1G <–> server.ethg++;
}
This network has a client, a server, and a router. Network analytics will be executed to observe and measure the traffic amongst these nodes.
3.1 Packet Sniffing
Example packet sniffing implementation:
class PacketSniffer : public cSimpleModule {
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
void logPacket(cPacket *pkt);
};
void PacketSniffer::initialize() {
// Initialization code, if necessary
}
void PacketSniffer::handleMessage(cMessage *msg) {
cPacket *pkt = check_and_cast<cPacket *>(msg);
logPacket(pkt);
send(pkt, “out”);
}
void PacketSniffer::logPacket(cPacket *pkt) {
EV << “Packet captured: ” << pkt->getName() << ” at time ” << simTime() << endl;
// Log additional packet details like size, source, destination
}
This module logs each packet that passes through the node, offering data for further analysis.
3.2 Metric Collection
Example metric collection implementation:
class MetricsCollector : public cSimpleModule {
private:
long packetCount;
simtime_t startTime;
simtime_t endTime;
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
void calculateThroughput();
void calculateLatency(cMessage *msg);
};
void MetricsCollector::initialize() {
packetCount = 0;
startTime = simTime();
}
void MetricsCollector::handleMessage(cMessage *msg) {
packetCount++;
calculateLatency(msg);
send(msg, “out”);
if (simTime() – startTime > 1) { // Example: calculate throughput every second
calculateThroughput();
startTime = simTime();
}
}
void MetricsCollector::calculateThroughput() {
double throughput = packetCount / (simTime() – startTime).dbl();
EV << “Current throughput: ” << throughput << ” packets/sec” << endl;
packetCount = 0;
}
void MetricsCollector::calculateLatency(cMessage *msg) {
simtime_t latency = simTime() – msg->getCreationTime();
EV << “Packet latency: ” << latency << ” seconds” << endl;
}
This module collects throughput and latency metrics, offering useful data for network analysis.
4.1 Logging Data
Example data logging:
void MetricsCollector::logMetrics() {
std::ofstream logFile;
logFile.open(“network_metrics.log”, std::ios_base::app);
logFile << “Time: ” << simTime() << “, Throughput: ” << throughput << ” packets/sec\n”;
logFile.close();
}
4.2 Real-Time Data Processing
Example real-time processing:
void MetricsCollector::handleMessage(cMessage *msg) {
packetCount++;
calculateLatency(msg);
if (packetCount > 1000) { // Example: detect high traffic volume
EV << “High traffic detected, triggering alert.” << endl;
// Implement alert or traffic management actions
}
send(msg, “out”);
if (simTime() – startTime > 1) {
calculateThroughput();
startTime = simTime();
}
}
This module identifies high traffic and could be extended to implement network enhancement or mitigation strategies in real time.
By using this manual, you can acquire the valuable information regarding the initialization, implementation and execution of Network Analytics in OMNeT++ including their evaluation process and how to enhance it by using gathered results. We are prepared to assist you in implementing Network Analytics within the OMNeT++ tool for your projects. For optimal guidance, please reach out to omnet-manual.com.