To implement a multi-microgrid imitation in OMNeT++ which comprises to building a recreation setting that comprises multiple microgrids using their corresponding control systems and communication networks. It was include different workings like for managing the microgrids to communicate protocols, inverters, loads and power sources. Now we provide step-by-step guide to get started along with a general multi-microgrid simulation in OMNeT++ by using the INET framework.
Step-by-Step Implementations:
Step 1: Install OMNeT++ and INET Framework
Step 2: Set Up Your Project
Step 3: Define Multi-Microgrid Models Using NED
package multimicrogrid;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
import inet.node.ethernet.EtherSwitch;
import inet.physicallayer.common.packetlevel.RadioMedium;
network MultiMicrogrid
{
parameters:
int numMicrogrids = default(3);
int numNodesPerMicrogrid = default(5);
types:
channel radioChannel extends RadioMedium {}
submodules:
radioMedium: radioChannel {
@display(“p=100,100”);
}
microgrid[numMicrogrids]: Router {
@display(“p=200+300*i,200”);
}
node[numMicrogrids][numNodesPerMicrogrid]: StandardHost {
@display(“p=300+300*i,300+100*j”);
}
connections allowunconnected:
for i=0..numMicrogrids-1 {
for j=0..numNodesPerMicrogrid-1 {
node[i][j].ethg++ <–> radioMedium <–> microgrid[i].ethg++;
}
}
}
Step 4: Implement Microgrid Communication Logic
#include <omnetpp.h>
#include “inet/applications/base/ApplicationBase.h”
#include “inet/common/packet/Packet.h”
using namespace omnetpp;
using namespace inet;
class MicrogridController : public ApplicationBase
{
protected:
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void controlMicrogrid();
void handleMicrogridMessage(cPacket *pkt);
cMessage *controlEvent = nullptr;
};
Define_Module(MicrogridController);
void MicrogridController::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_LOCAL) {
controlEvent = new cMessage(“controlMicrogrid”);
scheduleAt(simTime() + par(“controlStartTime”), controlEvent);
}
}
void MicrogridController::handleMessageWhenUp(cMessage *msg)
{
if (msg == controlEvent) {
controlMicrogrid();
scheduleAt(simTime() + par(“controlInterval”), controlEvent);
} else {
cPacket *pkt = check_and_cast<cPacket *>(msg);
handleMicrogridMessage(pkt);
}
}
void MicrogridController::controlMicrogrid()
{
// Implement microgrid control logic (e.g., load balancing, resource allocation)
EV << “Controlling microgrid” << endl;
}
void MicrogridController::handleMicrogridMessage(cPacket *pkt)
{
// Handle received microgrid message
EV << “Received microgrid message: ” << pkt->getName() << endl;
delete pkt;
}
#include <omnetpp.h>
#include “inet/applications/base/ApplicationBase.h”
#include “inet/common/packet/Packet.h”
using namespace omnetpp;
using namespace inet;
class MicrogridNode : public ApplicationBase
{
protected:
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void sendNodeData();
void handleNodeMessage(cPacket *pkt)
cMessage *sendEvent = nullptr;
};
Define_Module(MicrogridNode);
void MicrogridNode::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_LOCAL) {
sendEvent = new cMessage(“sendNodeData”);
scheduleAt(simTime() + par(“startTime”), sendEvent);
}
}
void MicrogridNode::handleMessageWhenUp(cMessage *msg)
{
if (msg == sendEvent) {
sendNodeData();
scheduleAt(simTime() + par(“sendInterval”), sendEvent);
} else {
cPacket *pkt = check_and_cast<cPacket *>(msg);
handleNodeMessage(pkt);
}
}
void MicrogridNode::sendNodeData()
{
// Create and send a node data packet to the microgrid controller
EV << “Sending node data” << endl;
Packet *pkt = new Packet(“NodeData”);
pkt->setByteLength(par(“dataSize”));
send(pkt, “lowerLayerOut”);
}
void MicrogridNode::handleNodeMessage(cPacket *pkt)
{
// Handle received node message
EV << “Received node message: ” << pkt->getName() << endl;
delete pkt;
}
Step 5: Integrate Microgrid Modules into Network Model
package multimicrogrid;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
import inet.physicallayer.contract.packetlevel.IRadioMedium;
import inet.physicallayer.common.packetlevel.RadioMedium;
network MultiMicrogrid
{
parameters:
int numMicrogrids = default(3);
int numNodesPerMicrogrid = default(5);
submodules:
radioMedium: RadioMedium {
@display(“p=100,100”);
}
microgrid[numMicrogrids]: Router {
@display(“p=200+300*i,200”);
@children:
wlan[0].radio.transmitter.typename = “MicrogridController”;
wlan[0].radio.receiver.typename = “MicrogridController”;
}
node[numMicrogrids][numNodesPerMicrogrid]: StandardHost {
@display(“p=300+300*i,300+100*j”);
@children:
wlan[0].radio.transmitter.typename = “MicrogridNode”;
wlan[0].radio.receiver.typename = “MicrogridNode”;
}
connections allowunconnected:
for i=0..numMicrogrids-1 {
for j=0..numNodesPerMicrogrid-1 {
node[i][j].ethg++ <–> radioMedium <–> microgrid[i].ethg++;
}
}
}
Step 6: Configure Simulation Parameters
[General]
network = MultiMicrogrid
sim-time-limit = 100s
# Mobility
**.node[*].mobility.bounds = “0,0,1000,1000”
# Microgrid controller application parameters
**.microgrid[*].udpApp.startTime = uniform(0s, 10s)
**.microgrid[*].udpApp.sendInterval = exponential(1s)
**.microgrid[*].udpApp.messageSize = 256B
**.microgrid[*].udpApp.localPort = 1000
**.microgrid[*].udpApp.destPort = 2000
# Microgrid node application parameters
**.node[*].udpApp.startTime = uniform(0s, 10s)
**.node[*].udpApp.sendInterval = exponential(1s)
**.node[*].udpApp.dataSize = 256B
**.node[*].udpApp.localPort = 3000
**.node[*].udpApp.destPort = 4000
Step 7: Build and Run the Simulation
Step 8: Analyze Results
The above setup we are completed about the Multi Microgrid in OMNeT++ and from this we developed the steps. We are provided that to further facts about the Multi Microgrid in OMNeT++. We provide extensive support for implementing Multi Microgrid in OMNeT++. Our knowledge encompasses complete simulation and performance analysis assistance. Contact us for professional guidance!