e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

How to Implement Heterogeneous satellite in OMNeT++

To implement the heterogeneous satellite network in OMNeT++ which encompasses the network simulation composed of various kinds of satellites (e.g., Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary Orbit (GEO)) that interact with one another and with ground stations. All kind of satellite has distinct properties like altitude, speed and communication capabilities which impact the entire network actions. We offered the details on how you can implement a heterogeneous satellite network in OMNeT++ with examples:

Step-by-Step Implementation:

  1. Define the Heterogeneous Satellite Network Architecture
  • LEO Satellites: Satellites in low Earth orbit (~500 to 2000 km), characterized by low latency and high mobility.
  • MEO Satellites: Satellites in medium Earth orbit (~2000 to 35,786 km), providing a balance amongst coverage and latency.
  • GEO Satellites: Satellites in geostationary orbit (~35,786 km), delivering constant coverage over a fixed area with higher latency.
  • Ground Stations: Stations on Earth that communicate with the satellites.
  • Inter-Satellite Links (ISLs): Links amongst satellites of the same or various kinds.
  • Satellite-to-Ground Links: Links between satellites and ground stations.
  1. Create OMNeT++ Modules for Different Satellites, Ground Stations, and Links

LEO Satellite Module

simple LEOSatellite {

gates:

inout linkIn[4];  // For communication with other satellites (ISLs)

inout groundLink;  // For communication with ground stations

parameters:

double altitude @unit(“km”) = default(500);  // LEO satellite altitude

double speed @unit(“km/s”) = default(7.8);  // Orbital speed

@display(“i=device/satellite”);

}

MEO Satellite Module

simple MEOSatellite {

gates:

inout linkIn[4];  // For communication with other satellites (ISLs)

inout groundLink;  // For communication with ground stations

parameters:

double altitude @unit(“km”) = default(20000);  // MEO satellite altitude

double speed @unit(“km/s”) = default(3.0);  // Orbital speed

@display(“i=device/satellite”);

}

GEO Satellite Module

simple GEOSatellite {

gates:

inout linkIn[4];  // For communication with other satellites (ISLs)

inout groundLink;  // For communication with ground stations

parameters:

double altitude @unit(“km”) = default(35786);  // GEO satellite altitude

double speed @unit(“km/s”) = default(0.0);  // Geostationary orbit (no speed relative to Earth)

@display(“i=device/satellite”);

}

Ground Station Module

simple GroundStation {

gates:

inout groundOut;  // For communication with satellites

parameters:

@display(“i=device/groundstation”);

}

Inter-Satellite Link (ISL) Module

simple InterSatelliteLink {

parameters:

double distance @unit(“km”) = default(1000);  // Distance between satellites

double dataRate @unit(“Gbps”) = default(10);  // Data rate of the ISL

double latency @unit(“ms”) = default(5);  // Latency for the signal to travel the distance

gates:

in linkIn;  // Input from one satellite

out linkOut; // Output to another satellite

}

Satellite-to-Ground Link Module

simple SatToGroundLink {

parameters:

double distance @unit(“km”) = default(500);  // Distance from satellite to ground station

double dataRate @unit(“Gbps”) = default(10);  // Data rate of the link

double latency @unit(“ms”) = default(2);  // Latency for the signal to travel the distance

gates:

in linkIn;  // Input from satellite

out linkOut; // Output to ground station

}

  1. Implement the Internal Logic of Each Component

Satellite Logic in C++

This logic is applicable to all kinds of satellites (LEO, MEO, GEO), with slight modifications based on their certain characteristics.

#include <omnetpp.h>

class Satellite : public omnetpp::cSimpleModule {

protected:

virtual void handleMessage(omnetpp::cMessage *msg) override;

virtual void initialize() override;

void updatePosition();  // Method to update satellite position in orbit

double altitude;

double speed;

};

Define_Module(Satellite);

void Satellite::initialize() {

altitude = par(“altitude”);

speed = par(“speed”);

// Schedule the first position update

scheduleAt(simTime() + 1.0, new cMessage(“updatePosition”));

}

void Satellite::handleMessage(omnetpp::cMessage *msg) {

if (strcmp(msg->getName(), “updatePosition”) == 0) {

updatePosition();

scheduleAt(simTime() + 1.0, msg);  // Schedule the next position update

} else if (strcmp(msg->getName(), “satelliteData”) == 0) {

// Relay data to another satellite or ground station

int outGateIndex = 0;  // Example: forward to the first connected device

send(msg, “linkIn$o”, outGateIndex);

} else {

// Handle other types of messages, if any

}

}

void Satellite::updatePosition() {

// Logic to update the satellite’s position based on orbital mechanics

EV << “Satellite position updated.\n”;

}

  1. Integrate the Components in a NED File

Heterogeneous Satellite Network Topology

This sample links LEO, MEO, and GEO satellites with each other and with ground stations.

network HeterogeneousSatelliteNetwork {

submodules:

leoSatelliteA: LEOSatellite {

parameters:

altitude = 500;

speed = 7.8;

}

meoSatelliteA: MEOSatellite {

parameters:

altitude = 20000;

speed = 3.0;

}

geoSatelliteA: GEOSatellite {

parameters:

altitude = 35786;

speed = 0.0;

}

groundStation: GroundStation;

linkLeoMEO: InterSatelliteLink {

parameters:

distance = 15000;  // Distance between LEO and MEO satellite

dataRate = 10Gbps;

latency = 50ms;

}

linkMEOGEO: InterSatelliteLink {

parameters:

distance = 20000;  // Distance between MEO and GEO satellite

dataRate = 10Gbps;

latency = 50ms;

}

linkLEOGround: SatToGroundLink {

parameters:

distance = 500;  // Distance between LEO satellite and ground station

dataRate = 10Gbps;

latency = 10ms;

}

linkGEOGround: SatToGroundLink {

parameters:

distance = 35786;  // Distance between GEO satellite and ground station

dataRate = 10Gbps;

latency = 100ms;

}

connections allowunconnected:

leoSatelliteA.linkIn[0] –> linkLeoMEO.linkIn;

linkLeoMEO.linkOut –> meoSatelliteA.linkIn[0];

meoSatelliteA.linkIn[1] –> linkMEOGEO.linkIn;

linkMEOGEO.linkOut –> geoSatelliteA.linkIn[0];

geoSatelliteA.groundLink –> linkGEOGround.linkIn;

linkGEOGround.linkOut –> groundStation.groundOut;

leoSatelliteA.groundLink –> linkLEOGround.linkIn;

linkLEOGround.linkOut –> groundStation.groundOut;

}

  1. Simulate and Analyze the Heterogeneous Satellite Network
  • Compile: Making sure that all modules are compiled in OMNeT++.
  • Execute: Run the simulation to monitor how data is transmitted amongst various types of satellites and amidst satellites and ground stations.
  • Analyze: Use OMNeT++ tools to evaluate network performance like latency, throughput, and the effect of satellite mobility on communication.
  1. Advanced Features
  • Dynamic Topology: Execute logic to simulate the movement of LEO and MEO satellites, dynamically fine-tuning link distances and latencies.
  • Routing Algorithms: Implement routing protocols that enhance data paths through the heterogeneous network according to the current topology.
  • QoS Management: Implement Quality of Service (QoS) mechanisms to prioritize certain kinds of traffic, especially over long-distance GEO links.

In conclusion, we start by defining the network topology and then configuring LEO, MEO and GEO modules and then connect the satellite to the ground station. With the help of this process, we can now implement the Heterogeneous satellite in OMNeT++. We will offer any additional details relevant to this topic, if needed.

More ideas on Heterogeneous satellites for your OMNeT++ thesis are shared by us, we can help you with the implementation! Just reach out to us for the best results and support with performance analysis. We specialize in different types of satellites, including Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary Orbit (GEO).

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .