e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

How to Implement Error Control & Fault Prediction in OMNeT++

To implement the error control and fault prediction in OMNeT++ has contains generating mechanisms that identify, correct, or guess errors and faults in a network. These mechanisms are critical for keep up network reliability and performance, specifically in large-scale, critical systems such as wireless sensor networks, IoT, or communication networks. If you want to explore more then contact us we will help you with best topics and implementation support.

Steps to Implement Error Control & Fault Prediction in OMNeT++

  1. Install OMNeT++ and INET Framework:
    • Make sure that OMNeT++ and the INET framework are installed. INET offers needed tools for mimicking network protocols, error handling, and fault management.
  2. Define the Network Topology:
    • Make a network topology using a .ned file that contains several nodes like sensors, routers where error control and fault prediction mechanisms will be executed.
  3. Implement Error Control Mechanism:
    • Improve or use existing models to execute error control methods such as Automatic Repeat Request (ARQ), Forward Error Correction (FEC), or other error detection and correction methods.
  4. Implement Fault Prediction Mechanism:
    • Implement a fault prediction algorithm that can monitor network parameters like signal strength, packet loss, and latency and predict potential faults before they happen. This can be based on statistical models, machine learning, or threshold-based methods.
  5. Simulate Various Scenarios:
    • Form scenarios where the network experiences errors or faults. The error control mechanism would detect and correct errors, through the fault prediction mechanism would anticipate and avoid potential faults.
  6. Configure the Simulation Environment:
    • Use the .ini file to configure parameters like error rates, fault thresholds, and the particular algorithms for error control and fault prediction.
  7. Run the Simulation and Analyse Results:
    • Implement the simulation and analyse the performance of the error control and fault prediction mechanisms. Important metrics contain error detection rate, correction accuracy, prediction accuracy, and the influence on network performance.

Example: Implementing Basic Error Control and Fault Prediction in OMNeT++

  1. Define the Network Topology in a .ned File

// ErrorControlFaultPredictionNetwork.ned

package networkstructure;

import inet.node.inet.StandardHost;

import inet.node.inet.Router;

network ErrorControlFaultPredictionNetwork

{

parameters:

int numNodes = default(5);  // Number of nodes in the network

submodules:

node[numNodes]: StandardHost {

@display(“p=100,100”);

numApps = 1;

app[0].typename = “ErrorControlApp”;

}

router: Router {

@display(“p=300,200”);

}

connections:

node[*].ethg++ <–> Ethernet100m <–> router.ethg++;

}

  1. Implement the Error Control Mechanism

Build a C++ class for the application that manages error control for each node.

#include <omnetpp.h>

#include <inet/applications/base/ApplicationBase.h>

using namespace omnetpp;

using namespace inet;

class ErrorControlApp : public ApplicationBase

{

protected:

int errorCount;

int correctionCount;

 

virtual void initialize(int stage) override;

virtual void handleMessageWhenUp(cMessage *msg) override;

void detectAndCorrectErrors(cPacket *packet);

public:

virtual int numInitStages() const override { return NUM_INIT_STAGES; }

};

Define_Module(ErrorControlApp);

void ErrorControlApp::initialize(int stage)

{

ApplicationBase::initialize(stage);

if (stage == INITSTAGE_APPLICATION_LAYER) {

errorCount = 0;

correctionCount = 0;

}

}

void ErrorControlApp::handleMessageWhenUp(cMessage *msg)

{

if (cPacket *packet = dynamic_cast<cPacket *>(msg)) {

detectAndCorrectErrors(packet);

} else {

delete msg;

}

}

void ErrorControlApp::detectAndCorrectErrors(cPacket *packet)

{

EV << “Detecting errors in the received packet.” << endl;

 

// Example: Simple parity check for error detection

bool errorDetected = uniform(0, 1) < 0.1;  // 10% chance of error

if (errorDetected) {

EV << “Error detected in the packet. Applying correction.” << endl;

errorCount++;

// Simulate error correction (e.g., retransmission, FEC)

bool correctionSuccess = uniform(0, 1) > 0.1;  // 90% chance of successful correction

if (correctionSuccess) {

EV << “Error successfully corrected.” << endl;

correctionCount++;

} else {

EV << “Error correction failed.” << endl;

}

} else {

EV << “No errors detected.” << endl;

}

delete packet;

}

  1. Implement Fault Prediction Mechanism

Implement the same or make a new class for fault prediction, observing network parameters and guessing faults.

class FaultPredictionApp : public ApplicationBase

{

protected:

double threshold;

double monitoredParameter;

virtual void initialize(int stage) override;

virtual void handleMessageWhenUp(cMessage *msg) override;

void predictFault();

public:

virtual int numInitStages() const override { return NUM_INITSTAGES; }

};

Define_Module(FaultPredictionApp);

void FaultPredictionApp::initialize(int stage)

{

ApplicationBase::initialize(stage);

if (stage == INITSTAGE_APPLICATION_LAYER) {

threshold = par(“faultThreshold”).doubleValue();

monitoredParameter = 0.0;

// Schedule initial prediction

scheduleAt(simTime() + uniform(1, 3), new cMessage(“predictFault”));

}

}

void FaultPredictionApp::handleMessageWhenUp(cMessage *msg)

{

if (strcmp(msg->getName(), “predictFault”) == 0) {

predictFault();

scheduleAt(simTime() + uniform(1, 3), msg);  // Re-schedule prediction

} else {

delete msg;

}

}

void FaultPredictionApp::predictFault()

{

EV << “Predicting potential fault.” << endl;

// Example: Monitor a parameter and predict a fault if it exceeds a threshold

monitoredParameter = uniform(0, 1);  // Simulate monitoring a parameter

if (monitoredParameter > threshold) {

EV << “Fault predicted! Parameter: ” << monitoredParameter << ” exceeds threshold: ” << threshold << endl;

// Implement actions to prevent the fault (e.g., rerouting, alerting)

} else {

EV << “No fault predicted. Parameter: ” << monitoredParameter << endl;

}

}

  1. Configure the Simulation in the .ini File

# omnetpp.ini

[General]

network = networkstructure.ErrorControlFaultPredictionNetwork

sim-time-limit = 300s

# Node settings

*.node[*].wlan.mac.maxQueueSize = 1000;

*.node[*].wlan.phy.transmitter.power = 2mW;

*.node[*].mobility.bounds = “500m 500m”;

*.node[*].app[0].faultThreshold = 0.8;  # Threshold for fault prediction

# Error control settings

*.node[*].app[0].errorRate = 0.1;  # 10% chance of error

*.node[*].app[0].correctionSuccessRate = 0.9;  # 90% chance of successful correction

  1. Explanation of the Example
  • Network Topology (ErrorControlFaultPredictionNetwork.ned):
    • The network consists of numerous nodes that execute error control and fault prediction mechanisms. These nodes communicate through a network where errors and faults may happen.
  • Error Control Mechanism (ErrorControlApp.cc):
    • The ErrorControlApp module detects errors in received packets and attempts to correct them using a basic error detection and correction algorithm.
  • Fault Prediction Mechanism (FaultPredictionApp.cc):
    • The FaultPredictionApp module observe a network parameter and predicts possible faults if the parameter exceeds a predefined threshold.
  • Simulation Configuration (omnetpp.ini):
    • The .ini file configures the error rates, correction success rates, and fault prediction thresholds for each node.

Running the Simulation

  • Compile the project in OMNeT++ IDE and run the simulation.
  • Use OMNeT++’s tools to analyse how the network manages errors and guesses faults. Focus on metrics such as error detection rate, correction accuracy, fault prediction accuracy, and complete network performance.

Extending the Example

  • Advanced Error Detection/Correction: Execute more sophisticated error control methods such as CRC (Cyclic Redundancy Check), Hamming codes, or Reed-Solomon codes.
  • Machine Learning-Based Fault Prediction: Incorporate machine learning models to guess faults based on historical data and real-time monitoring.
  • Dynamic Threshold Adjustment: Execute dynamic adjustment of fault prediction thresholds based on network conditions and performance.
  • Fault Recovery Mechanisms: Improve fault recovery strategies that automatically reroute traffic, assign additional resources, or inform network administrators of predicted faults.
  • Scalability Testing: Improve the number of nodes and mimic large-scale networks to check the scalability and robustness of the error control and error prediction mechanisms.

In this module, we had given step-by-step procedure to execute and analyse the results regarding Error Control and Fault Prediction using OMNeT++. Further data will be provided on your needs.

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .