To implement the error control and fault prediction in OMNeT++ has contains generating mechanisms that identify, correct, or guess errors and faults in a network. These mechanisms are critical for keep up network reliability and performance, specifically in large-scale, critical systems such as wireless sensor networks, IoT, or communication networks. If you want to explore more then contact us we will help you with best topics and implementation support.
Steps to Implement Error Control & Fault Prediction in OMNeT++
Example: Implementing Basic Error Control and Fault Prediction in OMNeT++
// ErrorControlFaultPredictionNetwork.ned
package networkstructure;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
network ErrorControlFaultPredictionNetwork
{
parameters:
int numNodes = default(5); // Number of nodes in the network
submodules:
node[numNodes]: StandardHost {
@display(“p=100,100”);
numApps = 1;
app[0].typename = “ErrorControlApp”;
}
router: Router {
@display(“p=300,200”);
}
connections:
node[*].ethg++ <–> Ethernet100m <–> router.ethg++;
}
Build a C++ class for the application that manages error control for each node.
#include <omnetpp.h>
#include <inet/applications/base/ApplicationBase.h>
using namespace omnetpp;
using namespace inet;
class ErrorControlApp : public ApplicationBase
{
protected:
int errorCount;
int correctionCount;
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void detectAndCorrectErrors(cPacket *packet);
public:
virtual int numInitStages() const override { return NUM_INIT_STAGES; }
};
Define_Module(ErrorControlApp);
void ErrorControlApp::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_APPLICATION_LAYER) {
errorCount = 0;
correctionCount = 0;
}
}
void ErrorControlApp::handleMessageWhenUp(cMessage *msg)
{
if (cPacket *packet = dynamic_cast<cPacket *>(msg)) {
detectAndCorrectErrors(packet);
} else {
delete msg;
}
}
void ErrorControlApp::detectAndCorrectErrors(cPacket *packet)
{
EV << “Detecting errors in the received packet.” << endl;
// Example: Simple parity check for error detection
bool errorDetected = uniform(0, 1) < 0.1; // 10% chance of error
if (errorDetected) {
EV << “Error detected in the packet. Applying correction.” << endl;
errorCount++;
// Simulate error correction (e.g., retransmission, FEC)
bool correctionSuccess = uniform(0, 1) > 0.1; // 90% chance of successful correction
if (correctionSuccess) {
EV << “Error successfully corrected.” << endl;
correctionCount++;
} else {
EV << “Error correction failed.” << endl;
}
} else {
EV << “No errors detected.” << endl;
}
delete packet;
}
Implement the same or make a new class for fault prediction, observing network parameters and guessing faults.
class FaultPredictionApp : public ApplicationBase
{
protected:
double threshold;
double monitoredParameter;
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void predictFault();
public:
virtual int numInitStages() const override { return NUM_INITSTAGES; }
};
Define_Module(FaultPredictionApp);
void FaultPredictionApp::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_APPLICATION_LAYER) {
threshold = par(“faultThreshold”).doubleValue();
monitoredParameter = 0.0;
// Schedule initial prediction
scheduleAt(simTime() + uniform(1, 3), new cMessage(“predictFault”));
}
}
void FaultPredictionApp::handleMessageWhenUp(cMessage *msg)
{
if (strcmp(msg->getName(), “predictFault”) == 0) {
predictFault();
scheduleAt(simTime() + uniform(1, 3), msg); // Re-schedule prediction
} else {
delete msg;
}
}
void FaultPredictionApp::predictFault()
{
EV << “Predicting potential fault.” << endl;
// Example: Monitor a parameter and predict a fault if it exceeds a threshold
monitoredParameter = uniform(0, 1); // Simulate monitoring a parameter
if (monitoredParameter > threshold) {
EV << “Fault predicted! Parameter: ” << monitoredParameter << ” exceeds threshold: ” << threshold << endl;
// Implement actions to prevent the fault (e.g., rerouting, alerting)
} else {
EV << “No fault predicted. Parameter: ” << monitoredParameter << endl;
}
}
# omnetpp.ini
[General]
network = networkstructure.ErrorControlFaultPredictionNetwork
sim-time-limit = 300s
# Node settings
*.node[*].wlan.mac.maxQueueSize = 1000;
*.node[*].wlan.phy.transmitter.power = 2mW;
*.node[*].mobility.bounds = “500m 500m”;
*.node[*].app[0].faultThreshold = 0.8; # Threshold for fault prediction
# Error control settings
*.node[*].app[0].errorRate = 0.1; # 10% chance of error
*.node[*].app[0].correctionSuccessRate = 0.9; # 90% chance of successful correction
Running the Simulation
Extending the Example
In this module, we had given step-by-step procedure to execute and analyse the results regarding Error Control and Fault Prediction using OMNeT++. Further data will be provided on your needs.