To implement the distributed computing in OMNeT++ encompasses site up a recreation atmosphere where numerous nodes connect and cooperate to achieve computational tasks. Here’s a steps to set up a basic dispersed computing simulation in OMNeT++.
Step-by-Step Implementation:
Step 1: Install OMNeT++ and INET Framework
Step 2: Set Up Your Project
Step 3: Define Network Models Using NED
package distributedcomputing;
import inet.node.inet.StandardHost;
import inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator;
import inet.linklayer.ethernet.EthernetInterface;
import inet.common.misc.ThruputMeteringChannel;
network DistributedComputingNetwork
{
parameters:
int numNodes = default(10);
submodules:
configurator: Ipv4NetworkConfigurator {
@display(“p=100,100”);
}
node[numNodes]: StandardHost {
@display(“p=200+100*i,200”);
numWlanInterfaces = 1;
}
connections allowunconnected:
for i=0..numNodes-1 {
for j=i+1..numNodes-1 {
node[i].ethg++ <–> ThruputMeteringChannel <–> node[j].ethg++;
}
}
}
Step 4: Implement Distributed Computing Logic in C++
#include <omnetpp.h>
#include “inet/applications/udpapp/UdpBasicApp.h”
using namespace omnetpp;
using namespace inet;
class DistributedNode : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
void startTask();
void distributeTask();
void collectResults();
};
Define_Module(DistributedNode);
void DistributedNode::initialize()
{
// Initialization code
scheduleAt(simTime() + par(“startTaskInterval”), new cMessage(“startTask”));
}
void DistributedNode::handleMessage(cMessage *msg)
{
if (strcmp(msg->getName(), “startTask”) == 0) {
startTask();
delete msg;
} else if (strcmp(msg->getName(), “distributeTask”) == 0) {
distributeTask();
delete msg;
} else if (strcmp(msg->getName(), “collectResults”) == 0) {
collectResults();
delete msg;
}
}
void DistributedNode::startTask()
{
// Code to start a distributed task
EV << “Starting a distributed task” << endl;
// Schedule task distribution
scheduleAt(simTime() + par(“distributeTaskInterval”), new cMessage(“distributeTask”));
}
void DistributedNode::distributeTask()
{
// Code to distribute tasks to other nodes
EV << “Distributing tasks to other nodes” << endl;
// Schedule result collection
scheduleAt(simTime() + par(“collectResultsInterval”), new cMessage(“collectResults”));
}
void DistributedNode::collectResults()
{
// Code to collect results from other nodes
EV << “Collecting results from other nodes” << endl;
}
network DistributedComputingNetwork
{
parameters:
int numNodes = default(10);
submodules:
configurator: Ipv4NetworkConfigurator {
@display(“p=100,100”);
}
node[numNodes]: DistributedNode {
@display(“p=200+100*i,200”);
numWlanInterfaces = 1;
}
connections allowunconnected:
for i=0..numNodes-1 {
for j=i+1..numNodes-1 {
node[i].ethg++ <–> ThruputMeteringChannel <–> node[j].ethg++;
}
}
}
Step 5: Configure Simulation Parameters
[General]
network = DistributedComputingNetwork
sim-time-limit = 10s
**.startTaskInterval = 1s
**.distributeTaskInterval = 2s
**.collectResultsInterval = 3s
Step 6: Build and Run the Simulation
Step 7: Analyze Results
The above mentioned information are define in way to complete the Distributed Computing in OMNeT++. Now we distinguish how to complete the Distributed Computing in OMNeT++. We are eager to suggest the eloquent material and beliefs just about Distributed Computing in OMNeT++. Get in touch with us for top-notch simulation and performance analysis on Distributed Computing in OMNeT++ from our skilled developers for your projects.