To implement the deep learning-based routing in OMNeT++ which is an advanced task encompasses incorporating a deep learning model with the OMNeT++ simulation environment. It is specifically helpful for networks in which the traditional routing algorithms may be sufficient like when in highly dynamic or difficult network environment like mobile ad hoc networks (MANETs) or vehicular networks. Follow the provided steps to accomplish it in OMNeT++:
Steps to Implement Deep Learning-Based Routing in OMNeT++
Example: Deep Learning-Based Routing in OMNeT++
network DeepLearningNetwork
{
submodules:
node1: SensorNode {
@display(“p=100,200”);
}
node2: SensorNode {
@display(“p=200,200”);
}
node3: SensorNode {
@display(“p=300,200”);
}
node4: SensorNode {
@display(“p=200,100”);
}
connections:
node1.radioModule <–> node2.radioModule;
node2.radioModule <–> node3.radioModule;
node2.radioModule <–> node4.radioModule;
node3.radioModule <–> node4.radioModule;
}
Train a deep learning model offline using a framework like TensorFlow or PyTorch. The model could take features like node positions, signal strength, and traffic load as inputs and predict the next hop.
Here’s a simple outline for training a model in Python:
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
# Load your training data
# X_train: features, y_train: labels (next hop node ID)
X_train = np.load(‘X_train.npy’)
y_train = np.load(‘y_train.npy’)
# Define the model
model = models.Sequential()
model.add(layers.Dense(64, activation=’relu’, input_shape=(X_train.shape[1],)))
model.add(layers.Dense(64, activation=’relu’))
model.add(layers.Dense(y_train.shape[1], activation=’softmax’))
# Compile the model
model.compile(optimizer=’adam’, loss=’categorical_crossentropy’, metrics=[‘accuracy’])
# Train the model
model.fit(X_train, y_train, epochs=10, batch_size=32)
# Save the model
model.save(‘deep_learning_routing_model.h5’)
Generate a Python script that loads the trained model and interacts with OMNeT++.
import tensorflow as tf
import numpy as np
class DeepLearningRouting:
def __init__(self, model_path):
self.model = tf.keras.models.load_model(model_path)
def predict_next_hop(self, features):
# features: A list of input features [node_position, signal_strength, etc.]
features = np.array(features).reshape((1, -1))
prediction = self.model.predict(features)
next_hop = np.argmax(prediction)
return next_hop
# Example usage
routing = DeepLearningRouting(‘deep_learning_routing_model.h5’)
features = [0.5, 0.2, 0.1] # Example features
next_hop = routing.predict_next_hop(features)
print(“Next hop:”, next_hop)
Altering the sensor node’s routing logic in OMNeT++ to call the Python script for routing decisions.
class DeepLearningRouting : public cSimpleModule
{
protected:
PyObject *pName, *pModule, *pFunc;
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
int predictNextHop(std::vector<double> features);
public:
DeepLearningRouting();
~DeepLearningRouting();
};
Define_Module(DeepLearningRouting);
DeepLearningRouting::DeepLearningRouting() {
Py_Initialize();
pName = PyUnicode_DecodeFSDefault(“deep_learning_routing_script”);
pModule = PyImport_Import(pName);
Py_DECREF(pName);
if (pModule != nullptr) {
pFunc = PyObject_GetAttrString(pModule, “predict_next_hop”);
if (pFunc && PyCallable_Check(pFunc)) {
// Ready to call Python function
} else {
if (PyErr_Occurred())
PyErr_Print();
fprintf(stderr, “Cannot find function ‘predict_next_hop’\n”);
}
} else {
PyErr_Print();
fprintf(stderr, “Failed to load ‘deep_learning_routing_script’\n”);
}
}
DeepLearningRouting::~DeepLearningRouting() {
Py_XDECREF(pFunc);
Py_XDECREF(pModule);
Py_Finalize();
}
void DeepLearningRouting::initialize() {
// Initialization code
}
void DeepLearningRouting::handleMessage(cMessage *msg) {
// Extract features from the message
std::vector<double> features = {/* populate with extracted features */};
// Predict the next hop using the deep learning model
int nextHop = predictNextHop(features);
// Forward the message to the next hop
send(msg, “out”, nextHop);
}
int DeepLearningRouting::predictNextHop(std::vector<double> features) {
PyObject *pArgs, *pValue;
pArgs = PyTuple_New(features.size());
for (size_t i = 0; i < features.size(); i++) {
pValue = PyFloat_FromDouble(features[i]);
PyTuple_SetItem(pArgs, i, pValue);
}
PyObject *pResult = PyObject_CallObject(pFunc, pArgs);
Py_DECREF(pArgs);
if (pResult != nullptr) {
int nextHop = (int)PyLong_AsLong(pResult);
Py_DECREF(pResult);
return nextHop;
} else {
PyErr_Print();
return -1; // Error handling
}
}
network = DeepLearningNetwork
sim-time-limit = 100s
**.numNodes = 4
**.radio.txPower = 1mW
**.DeepLearningRouting.modelPath = “deep_learning_routing_model.h5”
Running the Simulation
This demonstration has the detailed guide on how to implement Deep Learning based Routing in OMNeT++ using INET and deep learning Frameworks and how to train the models with an example. Whenever, you need details about this simulation, we will provide you. For implementing deep learning-based routing in the OMNeT++ tool, omnet-manual.com will assist you every step of the way. Stay connected with us to stay updated in this field.