To implement the Cognitive Radio Networks (CRNs) in OMNeT++ take in set up a reproduction situation among the developing cognitive radio-specific protocols, defining network models, and cognitive radio nodes. The INET framework may be lengthy to maintenance CRN functionalities. This step-by-step guide to help to get started with a basic CRN simulation in OMNeT++ is mentioned below.
Step-by-step Implementation:
Step 1: Install OMNeT++ and INET Framework
Step 2: Set Up Your Project
Step 3: Define Cognitive Radio Network Models Using NED
packagecognitive;
import inet.node.inet.StandardHost;
import inet.node.inet.Router;
import inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator;
import inet.physicallayer.common.packetlevel.RadioMedium;
import inet.mobility.single.RandomWaypointMobility;
network CognitiveRadioNetwork
{
parameters:
int numCognitiveNodes = default(10);
types:
channel radioChannel extends RadioMedium {}
submodules:
configurator: Ipv4NetworkConfigurator {
@display(“p=100,100”);
}
baseStation: Router {
@display(“p=200,100”);
}
cognitiveNode[numCognitiveNodes]: StandardHost {
@display(“p=300+100*i,200”);
mobility.typename = “RandomWaypointMobility”;
}
radioMedium: radioChannel {
@display(“p=400,100”);
}
connections allowunconnected:
for i=0..numCognitiveNodes-1 {
cognitiveNode[i].wlan[0] <–> radioMedium <–> baseStation.wlan[0];
}
}
Step 4: Implement Cognitive Radio Communication Logic
network CognitiveRadioNetwork
{
parameters:
int numCognitiveNodes = default(10);
types:
channel radioChannel extends RadioMedium {
@display(“bgb=600,600;bgi=background;bgf=bg.jpg”);
}
submodules:
configurator: Ipv4NetworkConfigurator {
@display(“p=100,100”);
}
baseStation: Router {
@display(“p=200,100”);
}
cognitiveNode[numCognitiveNodes]: StandardHost {
@display(“p=300+100*i,200”);
mobility.typename = “RandomWaypointMobility”;
}
radioMedium: radioChannel {
@display(“p=400,100”);
physicalEnvironmentModule = “^.^.physicalEnvironment”;
backgroundNoiseModule = “^.^.backgroundNoise”;
}
connections allowunconnected:
for i=0..numCognitiveNodes-1 {
cognitiveNode[i].wlan[0] <–> radioMedium <–> baseStation.wlan[0];
}
}
Step 5: Implement Custom Cognitive Radio Modules
#include <omnetpp.h>
#include “inet/applications/base/ApplicationBase.h”
#include “inet/applications/udpapp/UdpBasicApp.h”
#include “inet/networklayer/common/L3AddressResolver.h”
#include “inet/networklayer/contract/ipv4/Ipv4Address.h”
#include “inet/networklayer/contract/IL3AddressType.h”
#include “inet/physicallayer/contract/packetlevel/IRadio.h”
using namespace omnetpp;
using namespace inet;
class CognitiveRadioApp : public ApplicationBase
{
protected:
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void senseSpectrum();
void sendPacket();
void handlePacket(cPacket *pkt);
cMessage *sensingEvent = nullptr;
};
Define_Module(CognitiveRadioApp);
void CognitiveRadioApp::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_LOCAL) {
// Initialization code
if (par(“senseSpectrum”).boolValue()) {
sensingEvent = new cMessage(“senseSpectrum”);
scheduleAt(simTime() + par(“sensingInterval”), sensingEvent);
}
}
}
void CognitiveRadioApp::handleMessageWhenUp(cMessage *msg)
{
if (msg == sensingEvent) {
senseSpectrum();
scheduleAt(simTime() + par(“sensingInterval”), sensingEvent);
} else if (msg->isSelfMessage()) {
if (strcmp(msg->getName(), “sendPacket”) == 0) {
sendPacket();
scheduleAt(simTime() + par(“sendInterval”), msg);
}
} else {
cPacket *pkt = check_and_cast<cPacket *>(msg);
handlePacket(pkt);
}
}
void CognitiveRadioApp::senseSpectrum()
{
// Implement spectrum sensing logic
EV << “Sensing spectrum” << endl;
}
void CognitiveRadioApp::sendPacket()
{
// Create and send a packet
EV << “Sending packet” << endl;
cPacket *pkt = new cPacket(“CognitiveRadioPacket”);
pkt->setByteLength(par(“packetSize”));
send(pkt, “lowerLayerOut”);
}
void CognitiveRadioApp::handlePacket(cPacket *pkt)
{
// Handle received packet
EV << “Received packet: ” << pkt->getName() << endl;
delete pkt;
}
network CognitiveRadioNetwork
{
parameters:
int numCognitiveNodes = default(10);
types:
channel radioChannel extends RadioMedium {
@display(“bgb=600,600;bgi=background;bgf=bg.jpg”);
}
submodules:
configurator: Ipv4NetworkConfigurator {
@display(“p=100,100”);
}
baseStation: Router {
@display(“p=200,100”);
}
cognitiveNode[numCognitiveNodes]: StandardHost {
@display(“p=300+100*i,200”);
mobility.typename = “RandomWaypointMobility”;
@children:
udpApp: CognitiveRadioApp {
localPort = 12345;
destPort = 54321;
startTime = uniform(0, 1s);
packetSize = 512B;
sendInterval = exponential(1s);
senseSpectrum = true;
sensingInterval = exponential(1s);
}
}
radioMedium: radioChannel {
@display(“p=400,100”);
physicalEnvironmentModule = “^.^.physicalEnvironment”;
backgroundNoiseModule = “^.^.backgroundNoise”;
}
connections allowunconnected:
for i=0..numCognitiveNodes-1 {
cognitiveNode[i].wlan[0] <–> radioMedium <–> baseStation.wlan[0];
}
}
Step 6: Configure Simulation Parameters
[General]
network = CognitiveRadioNetwork
sim-time-limit = 100s
# Mobility
**.cognitiveNode[*].mobility.bounds = “0,0,1000,1000”
**.cognitiveNode[*].mobility.speed = uniform(1mps, 10mps)
# Radio medium configuration
**.radioMedium.typename = “Ieee80211ScalarRadioMedium”
**.radioMedium.propagation.typename = “ConstantSpeedPropagation”
**.radioMedium.pathLoss.typename = “FreeSpacePathLoss”
**.radioMedium.obstacleLoss.typename = “TraceObstacleLoss”
**.radioMedium.backgroundNoise.typename = “IsotropicScalarBackgroundNoise”
**.radioMedium.mediumLimitCache.typename = “GridMediumLimitCache”
**.radioMedium.rangeFilter.typename = “ConstantRangeFilter”
# Physical layer configuration
**.cognitiveNode[*].wlan[*].radio.typename = “Ieee80211ScalarRadio”
**.cognitiveNode[*].wlan[*].radio.transmitter.power = 20mW
**.cognitiveNode[*].wlan[*].radio.receiver.sensitivity = -85dBm
Step 7: Build and Run the Simulation
Step 8: Analyze Results
In this scripts the summary in the method to formulate the Cognitive Radio Networks in OMNeT++. We may perform these evocative to spread the Cognitive Radio Networks and we study more explain to implement custom cognitive radio modules. We are enthusiastic to underwrite the active compressed to state the Cognitive Radio Networks in ns3.
Reach out to us for exceptional simulation and project performance on Cognitive Radio Networks using OMNeT++. Our expert developers specialize in creating cognitive radio-specific protocols, designing network models, and building cognitive radio nodes tailored to your project, ensuring you receive the best ideas and solutions.