To implement Bio-inspired routing in OMNeT++, we have to generate a routing algorithm that simulates biological processes or actions like those discovered in ant colonies, bees or genetic evolution. It is commonly used in wireless sensor networks (WSNs), ad hoc networks, or mobile networks where adaptive, decentralized decision-making is beneficial. Below, we provide the step-by-step approach to execute this in OMNeT++:
Steps to Implement Bio-Inspired Routing in OMNeT++
Example: Ant Colony Optimization (ACO) Routing
Below is an example configuration to execute a simple Ant Colony Optimization (ACO) routing algorithm in OMNeT++.
network BioInspiredNetwork
{
submodules:
node1: SensorNode {
@display(“p=100,200”);
}
node2: SensorNode {
@display(“p=200,200”);
}
node3: SensorNode {
@display(“p=300,200”);
}
node4: SensorNode {
@display(“p=200,100”);
}
connections:
node1.radioModule <–> node2.radioModule;
node2.radioModule <–> node3.radioModule;
node2.radioModule <–> node4.radioModule;
node3.radioModule <–> node4.radioModule;
}
Create a C++ module that implements the ACO routing logic.
class ACORouting : public cSimpleModule
{
protected:
struct PheromoneTableEntry {
int nextHop;
double pheromone;
};
std::map<int, PheromoneTableEntry> pheromoneTable;
virtual void initialize() override;
virtual void handleMessage(cMessage *msg) override;
void updatePheromone(int destination, int nextHop, double deltaPheromone);
int selectNextHop(int destination);
public:
void forwardPacket(cPacket *packet);
};
Define_Module(ACORouting);
void ACORouting::initialize()
{
// Initialize pheromone table
// Assume node IDs are integers and neighbors are directly connected nodes
}
void ACORouting::handleMessage(cMessage *msg)
{
if (cPacket *packet = dynamic_cast<cPacket *>(msg)) {
int destination = packet->getDestination();
int nextHop = selectNextHop(destination);
if (nextHop != -1) {
send(packet, “out”, nextHop);
updatePheromone(destination, nextHop, 0.1); // Add pheromone
} else {
delete packet; // Drop packet if no path found
}
}
}
void ACORouting::updatePheromone(int destination, int nextHop, double deltaPheromone)
{
if (pheromoneTable.find(destination) != pheromoneTable.end()) {
pheromoneTable[destination].pheromone += deltaPheromone;
} else {
PheromoneTableEntry entry = {nextHop, deltaPheromone};
pheromoneTable[destination] = entry;
}
}
int ACORouting::selectNextHop(int destination)
{
if (pheromoneTable.find(destination) != pheromoneTable.end()) {
return pheromoneTable[destination].nextHop;
}
return -1; // No path found
}
void ACORouting::forwardPacket(cPacket *packet)
{
int destination = packet->getDestination();
int nextHop = selectNextHop(destination);
if (nextHop != -1) {
send(packet, “out”, nextHop);
} else {
delete packet; // Drop packet if no path found
}
}
Extend the sensor node modules to incorporate the ACO routing module.
simple SensorNode
{
gates:
input radioIn;
output radioOut;
submodules:
radioModule: Radio {
@display(“p=50,50”);
}
routing: ACORouting {
@display(“p=100,100”);
}
connections:
radioIn –> routing.in;
routing.out –> radioOut;
}
[General]
network = BioInspiredNetwork
sim-time-limit = 100s
**.numNodes = 4
**.radio.txPower = 1mW
**.routing.pheromoneDecayRate = 0.05
**.routing.pheromoneBoost = 0.1
Running the Simulation
From this procedure, we comprehensively delivered the implementation steps of Bio Inspired Routing in OMNeT++ using Routing algorithm and INET framework which provides the additional features. Furthermore, we plan to offer extra details of ant colony and so on. To Implement Bio Inspired Routing in OMNeT++ tool we will guide you at each and evry step ,stay in touch with us to know in this area.