To implement the 3D Underwater Wireless Sensor Network (UWSN) in OMNeT++ requires an environment that has underwater sensor nodes, communication channels suitable for underwater environments and acoustic interactive features. We need to expand the INET or use extra libraries mainly designed for underwater communication because INET framework is commonly used for old communication networks. Connect with us for best simulation results on 3D Underwater Wireless Sensor Network (UWSN) in OMNeT++.
Here, we offer the step-by-step details on how to implement 3D Underwater WSN in OMNeT++
Step-by-Step Implementation:
Step 1: Install OMNeT++ and INET Framework
Step 2: Set Up Your Project
Step 3: Define UWSN Models Using NED
package uwsn;
import inet.node.inet.StandardHost;
import inet.mobility.single.RandomWaypointMobility;
import inet.physicallayer.common.packetlevel.RadioMedium;
network UWSNNetwork
{
parameters:
int numNodes = default(10);
types:
channel radioChannel extends RadioMedium {}
submodules:
radioMedium: radioChannel {
@display(“p=100,100”);
}
node[numNodes]: StandardHost {
@display(“p=200+100*i,200”);
mobility.typename = “RandomWaypointMobility”;
@configurator:
wlan.typename = “UWSNTransceiver”;
}
connections allowunconnected:
for i=0..numNodes-1 {
node[i].wlan[0] <–> radioMedium <–> node[(i+1) % numNodes].wlan[0];
}
}
Step 4: Implement Underwater Communication Logic
#include <omnetpp.h>
#include “inet/applications/base/ApplicationBase.h”
#include “inet/common/packet/Packet.h”
using namespace omnetpp;
using namespace inet;
class UWSNTransmitter : public ApplicationBase
{
protected:
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void sendUnderwaterMessage();
void handleUnderwaterMessage(cPacket *pkt);
cMessage *sendEvent = nullptr;
};
Define_Module(UWSNTransmitter);
void UWSNTransmitter::initialize(int stage)
{
ApplicationBase::initialize(stage);
if (stage == INITSTAGE_LOCAL) {
sendEvent = new cMessage(“sendUnderwaterMessage”);
scheduleAt(simTime() + par(“startTime”), sendEvent);
}
}
void UWSNTransmitter::handleMessageWhenUp(cMessage *msg)
{
if (msg == sendEvent) {
sendUnderwaterMessage();
scheduleAt(simTime() + par(“sendInterval”), sendEvent);
} else {
cPacket *pkt = check_and_cast<cPacket *>(msg);
handleUnderwaterMessage(pkt);
}
}
void UWSNTransmitter::sendUnderwaterMessage()
{
// Create and send an underwater message to the next node
EV << “Sending underwater message” << endl;
Packet *pkt = new Packet(“UnderwaterMessage”);
pkt->setByteLength(par(“messageSize”));
send(pkt, “lowerLayerOut”);
}
void UWSNTransmitter::handleUnderwaterMessage(cPacket *pkt)
{
// Handle received underwater message
EV << “Received underwater message: ” << pkt->getName() << endl;
delete pkt;
}
#include <omnetpp.h>
#include “inet/applications/base/ApplicationBase.h”
#include “inet/common/packet/Packet.h”
using namespace omnetpp;
using namespace inet;
class UWSNReceiver : public ApplicationBase
{
protected:
virtual void initialize(int stage) override;
virtual void handleMessageWhenUp(cMessage *msg) override;
void handleUnderwaterMessage(cPacket *pkt);
};
Define_Module(UWSNReceiver);
void UWSNReceiver::initialize(int stage)
{
ApplicationBase::initialize(stage);
}
void UWSNReceiver::handleMessageWhenUp(cMessage *msg)
{
if (msg->isSelfMessage()) {
delete msg;
} else {
cPacket *pkt = check_and_cast<cPacket *>(msg);
handleUnderwaterMessage(pkt);
}
}
void UWSNReceiver::handleUnderwaterMessage(cPacket *pkt)
{
// Handle received underwater message
EV << “Received underwater message: ” << pkt->getName() << endl;
delete pkt;
}
Step 5: Implement 3D Mobility Model
#include “inet/mobility/single/RandomWaypointMobility.h”
namespace inet {
class ThreeDRandomWaypointMobility : public RandomWaypointMobility
{
protected:
virtual void initialize(int stage) override;
virtual void setTargetPosition() override;
};
Define_Module(ThreeDRandomWaypointMobility);
void ThreeDRandomWaypointMobility::initialize(int stage)
{
RandomWaypointMobility::initialize(stage);
}
void ThreeDRandomWaypointMobility::setTargetPosition()
{
targetPosition.x = uniform(0, playgroundSizeX);
targetPosition.y = uniform(0, playgroundSizeY);
targetPosition.z = uniform(0, playgroundSizeZ);
}
} // namespace inet
Step 6: Integrate 3D Mobility and Underwater Communication Modules
package uwsn;
import inet.node.inet.StandardHost;
import inet.physicallayer.contract.packetlevel.IRadioMedium;
import inet.physicallayer.common.packetlevel.RadioMedium;
network UWSNNetwork
{
parameters:
int numNodes = default(10);
submodules:
radioMedium: RadioMedium {
@display(“p=100,100”);
}
node[numNodes]: StandardHost {
@display(“p=200+100*i,200”);
mobility.typename = “ThreeDRandomWaypointMobility”;
@children:
wlan[0].radio.transmitter.typename = “UWSNTransmitter”;
wlan[0].radio.receiver.typename = “UWSNReceiver”;
}
connections allowunconnected:
for i=0..numNodes-1 {
node[i].wlan[0] <–> radioMedium <–> node[(i+1) % numNodes].wlan[0];
}
}
Step 7: Configure Simulation Parameters
[General]
network = UWSNNetwork
sim-time-limit = 100s
# Mobility
**.node[*].mobility.bounds = “0,0,0,1000,1000,1000”
# Underwater communication parameters
**.node[*].udpApp.startTime = uniform(0s, 10s)
**.node[*].udpApp.sendInterval = exponential(1s)
**.node[*].udpApp.messageSize = 256B
**.node[*].udpApp.localPort = 1000
**.node[*].udpApp.destPort = 2000
Step 8: Build and Run the Simulation
Step 9: Analyze Results
In this script, we comprehensively provide the essential information needed to implement 3D Underwater WSN and how to expand the INET framework using OMNeT++. As per you needs, we can offer any additional details about this topic.