e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

How to Calculate Network Signal to Noise ratio in omnet++

To calculate the Signal-to-Noise Ratio (SNR) in a network simulation using OMNeT++ has needs to evaluate the power of the signal relative to the power of the background noise and the SNR is crucial parameters in communication networks especially in wireless communications that impact the quality of the received signal and overall network performance.

Step-by-Step Implementation:

  1. Understand the SNR Calculation

The SNR is defined as the ratio of the signal power to the noise power:

SNR=PsignalPnoise\text{SNR} = \frac{P_{\text{signal}}}{P_{\text{noise}}}SNR=Pnoise​Psignal​​

In decibels (dB), SNR is often expressed as:

SNR (dB)=10⋅log⁡10(PsignalPnoise)\text{SNR (dB)} = 10 \cdot \log_{10} \left(\frac{P_{\text{signal}}}{P_{\text{noise}}}\right)SNR (dB)=10⋅log10​(Pnoise​Psignal​​)

Where:

  • PsignalP_{\text{signal}}Psignal​ is the power of the received signal.
  • PnoiseP_{\text{noise}}Pnoise​ is the power of the background noise.
  1. Set up Signal and Noise Models

In OMNeT++ simulation, we need to have models or parameters for the signal power and noise power and these can be based on actual physical models like free-space path loss, shadowing or simplified models for simulation.

Example: Simple Signal and Noise Power Calculation

Assume we have a simple model where the signal power PsignalP_{\text{signal}}Psignal​ drops with distance because of path loss, and the noise power PnoiseP_{\text{noise}}Pnoise​ is constant.

double calculateSignalPower(double txPower, double distance, double pathLossExponent) {

// Free-space path loss model (simplified)

return txPower / pow(distance, pathLossExponent);

}

double calculateNoisePower() {

// Constant noise power

return 1e-9; // Example noise power in watts

}

  1. Calculate SNR

Using the signal and noise power, we need to estimate the SNR for each received signal in the simulation.

double calculateSNR(double signalPower, double noisePower) {

return signalPower / noisePower;

}

double calculateSNRdB(double signalPower, double noisePower) {

return 10 * log10(signalPower / noisePower);

}

  1. Integrate SNR Calculation in Your Simulation

In handleMessage or related function in OMNeT++ module incorporates the SNR calculation whenever a message is received. This will permit to observe the SNR for each message or transmission.

void handleMessage(cMessage *msg) override {

// Example values; these would be dynamic in a real simulation

double txPower = 1e-3; // Transmitter power in watts

double distance = 100.0; // Distance in meters

double pathLossExponent = 2.0; // Path loss exponent

double signalPower = calculateSignalPower(txPower, distance, pathLossExponent);

double noisePower = calculateNoisePower();

double snr = calculateSNR(signalPower, noisePower);

double snrDb = calculateSNRdB(signalPower, noisePower);

EV << “SNR: ” << snr << ” (linear), ” << snrDb << ” dB” << endl;

// Further processing of the message…

send(msg, “out”);

}

  1. Emit and Record SNR Values

To measure the SNR values during or after the simulation, we need to release them as signals or record them as scalars.

simsignal_t snrSignal;

simsignal_t snrDbSignal;

void initialize() override {

snrSignal = registerSignal(“snr”);

snrDbSignal = registerSignal(“snrDb”);

}

void handleMessage(cMessage *msg) override {

double txPower = 1e-3; // Example transmitter power in watts

double distance = 100.0; // Example distance in meters

double pathLossExponent = 2.0; // Path loss exponent

double signalPower = calculateSignalPower(txPower, distance, pathLossExponent);

double noisePower = calculateNoisePower();

double snr = calculateSNR(signalPower, noisePower);

double snrDb = calculateSNRdB(signalPower, noisePower);

emit(snrSignal, snr);

emit(snrDbSignal, snrDb);

EV << “SNR: ” << snr << ” (linear), ” << snrDb << ” dB” << endl;

send(msg, “out”);

}

  1. Run the Simulation and Analyse SNR

After running simulation, we can evaluate the SNR values using OMNeT++’s built-in analysis tools. We might want to monitor how SNR varies with distance, time, or under diverse network conditions.

Example Scenario

Below is the complete sample that demonstrates how to incorporate SNR calculation into a simple wireless node model in OMNeT++:

class WirelessNode : public cSimpleModule {

private:

simsignal_t snrSignal;

simsignal_t snrDbSignal;

protected:

virtual void initialize() override {

snrSignal = registerSignal(“snr”);

snrDbSignal = registerSignal(“snrDb”);

}

virtual void handleMessage(cMessage *msg) override {

double txPower = 1e-3; // Example transmitter power in watts

double distance = 100.0; // Example distance in meters

double pathLossExponent = 2.0; // Path loss exponent

double signalPower = calculateSignalPower(txPower, distance, pathLossExponent);

double noisePower = calculateNoisePower();

double snr = calculateSNR(signalPower, noisePower);

double snrDb = calculateSNRdB(signalPower, noisePower);

emit(snrSignal, snr);

emit(snrDbSignal, snrDb);

EV << “SNR: ” << snr << ” (linear), ” << snrDb << ” dB” << endl;

send(msg, “out”);

}

double calculateSignalPower(double txPower, double distance, double pathLossExponent) {

return txPower / pow(distance, pathLossExponent);

}

double calculateNoisePower() {

return 1e-9; // Example noise power in watts

}

double calculateSNR(double signalPower, double noisePower) {

return signalPower / noisePower;

}

double calculateSNRdB(double signalPower, double noisePower) {

return 10 * log10(signalPower / noisePower);

}

};

  1. Post-Simulation Analysis

After completing the simulation, we need to measure the SNR data to determine the quality of the communication links. Low SNR values may signify the poor network conditions, the leads to higher error rates or lower throughput.

In the conclusion we had successfully calculated the basic network with Signal-to-Noise Ratio in OMNeT++ simulation by generating the model to run the SNR values in different network conditions. Also, we provide more related information on Signal-to-Noise Ratio. We provide unparalleled project guidance for determining the Network Signal to Noise Ratio using the omnet++ tool. Share your parameter specifications with us, and we will meticulously compare and provide the best results. Our team is comprised of top-tier developers and researchers who are dedicated to completing your project on time.

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .