e-mail address: omnetmanual@gmail.com

Phone number: 7639361621

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

Dec 23 / Posted by OMNeT++ MANUAL

No Comments

Experimental Control and Design of Low-Frequency Bias Networks for Dynamically Biased Amplifiers

To reach the video bandwidth requirements on the supply paths, power amplifiers with dynamic bias schemes are constrained to reduce the values of the low-frequency (LF) decoupling capacitors on their bias lines. This can entail a decrease of the LF stability margins, among other negative effects. In this work, a methodology is proposed to experimentally monitor and control the dominant poles that govern the LF dynamics of both gate and drain bias lines from dc to high compression power. A specific topology for the bias observation accesses allows a consistent characterization in large-signal regimes.

An automatic procedure to trace root contours versus four control parameters is also developed. The complete approach can be used to optimize the design of the bias lines in terms of video bandwidth, relative stability margins, and bias voltage transfer function characteristics. Moreover, the design can account for the effect of the large-signal RF drive on these LF performances. The methodology is exemplified and validated in a demonstrator prototype specifically built for that purpose.

Tags: mixim omnet++,omnet++ project title,omnet++ projects

Categories: 2015 Omnet++ Projects

designed by OMNeT++ Projects .