To implement public key cryptography in OMNeT++ has needs to emulate the encryption and decryption processes using public and private keys to secure interaction among network nodes. The Public key cryptography is often used for secure data exchange, digital signatures, and key exchange mechanisms. For all types of implementation needs we ae ready to help you with best results. The below are the procedures on how to implement the public key cryptography in OMNeT++:
Steps to Implement Public Key Cryptography in OMNeT++
Initiate by define the simple network topology where nodes will interact using public key cryptography. The topology might include:
Network Topology Setup:
Describe the simple modules for the network:
simple ClientNode
{
parameters:
@display(“i=block/pc”);
gates:
inout ethg;
}
simple ServerNode
{
parameters:
@display(“i=block/server”);
gates:
inout ethg;
}
simple KeyDistributionCenter
{
parameters:
@display(“i=block/key”);
gates:
inout ethg;
}
network PKCNetwork
{
submodules:
client: ClientNode;
server: ServerNode;
kdc: KeyDistributionCenter;
connections:
client.ethg <–> server.ethg;
client.ethg <–> kdc.ethg;
server.ethg <–> kdc.ethg;
}
Before secure interaction can occur, clients and servers essential to exchange or retrieve each other’s public keys. This can be completed via a Key Distribution Center (KDC) or direct exchange.
Key Distribution Center (KDC) Logic:
class KeyDistributionCenter : public cSimpleModule {
private:
std::map<std::string, std::string> publicKeys; // Mapping of node ID to public key
protected:
virtual void initialize() override {
// Initialize public keys for clients and servers (for simplicity, using strings here)
publicKeys[“client”] = “publicKeyClient”;
publicKeys[“server”] = “publicKeyServer”;
}
virtual void handleMessage(cMessage *msg) override {
cPacket *pkt = check_and_cast<cPacket*>(msg);
std::string requester = pkt->par(“requester”).stringValue();
std::string requestedKey = getPublicKey(requester);
// Respond with the requested public key
cPacket *response = new cPacket(“KeyResponse”);
response->addPar(“publicKey”) = requestedKey;
send(response, “ethg$o”);
}
std::string getPublicKey(const std::string &nodeId) {
return publicKeys[nodeId];
}
};
The client encoded the information using the server’s public key, and the server decodes it using its private key.
class ClientNode : public cSimpleModule {
private:
std::string serverPublicKey;
protected:
virtual void initialize() override {
// Request server’s public key from the KDC
requestServerPublicKey();
}
virtual void handleMessage(cMessage *msg) override {
cPacket *pkt = check_and_cast<cPacket*>(msg);
if (strcmp(pkt->getName(), “KeyResponse”) == 0) {
serverPublicKey = pkt->par(“publicKey”).stringValue();
EV << “Received server’s public key: ” << serverPublicKey << endl;
encryptAndSendData();
} else {
// Handle other messages
}
delete pkt;
}
void requestServerPublicKey() {
cPacket *request = new cPacket(“KeyRequest”);
request->addPar(“requester”) = “client”;
send(request, “ethg$o”);
}
void encryptAndSendData() {
std::string data = “SensitiveData”;
std::string encryptedData = encryptData(data, serverPublicKey);
cPacket *dataPacket = new cPacket(“EncryptedData”);
dataPacket->addPar(“data”) = encryptedData;
send(dataPacket, “ethg$o”);
}
std::string encryptData(const std::string &data, const std::string &key) {
// Simple XOR encryption for demonstration
std::string encryptedData = data;
for (size_t i = 0; i < data.size(); ++i) {
encryptedData[i] ^= key[i % key.size()];
}
return encryptedData;
}
};
class ServerNode : public cSimpleModule {
private:
std::string privateKey = “privateKeyServer”; // Server’s private key
protected:
virtual void handleMessage(cMessage *msg) override {
cPacket *pkt = check_and_cast<cPacket*>(msg);
if (strcmp(pkt->getName(), “EncryptedData”) == 0) {
std::string encryptedData = pkt->par(“data”).stringValue();
std::string decryptedData = decryptData(encryptedData, privateKey);
EV << “Received and decrypted data: ” << decryptedData << endl;
}
delete pkt;
}
std::string decryptData(const std::string &data, const std::string &key) {
// Simple XOR decryption (same as encryption in this case)
std::string decryptedData = data;
for (size_t i = 0; i < data.size(); ++i) {
decryptedData[i] ^= key[i % key.size()];
}
return decryptedData;
}
};
Run simulations to measure the performance of the public key cryptography implementation:
To further improve the implementation:
In this module, we had demonstrated how to execute the public key cryptography in OMNeT++ tool that provides secure interaction among the network. Additional specific details regarding the public key cryptography will be provided