To implement the AI-based resource allocation in OMNeT++ has encompasses incorporating AI algorithms including network simulation models to optimize resource usage. Given below is a detailed approach to set up and mimic AI-based resource allocation in OMNeT++:
Step-by-Step Implementations:
network AIResourceAllocation
{
submodules:
node1: Node {
@display(“i=node”);
}
node2: Node {
@display(“i=node”);
}
connections:
node1.out –> node2.in;
}
import tensorflow as tf
def allocate_resources(state):
model = tf.keras.models.load_model(‘resource_allocation_model.h5’)
action = model.predict(state)
return action
#include <pybind11/pybind11.h>
void allocateResources() {
py::scoped_interpreter guard{};
py::module ai_module = py::module::import(“ai_module”);
py::object allocate = ai_module.attr(“allocate_resources”);
auto result = allocate();
// Use result in OMNeT++ simulation
}
void Node::handleMessage(cMessage *msg)
{
// Get network state
auto state = getNetworkState();
// Call AI model for resource allocation
auto allocation = allocateResources(state);
// Apply resource allocation
applyAllocation(allocation);
}
[Config AIResourceAllocation]
network = AIResourceAllocation
**.node1.resourceAllocationInterval = 10s
In this page, we had provided step-by-step execution process to setup and simulate the AI based resource allocation in the tool OMNeT++ using AI algorithms. We will offered more valuable informations depends on your needs. We are here to provide you with top-notch guidance and support for implementing AI-based resource allocation in the OMNeT++ tool, ensuring you receive expert assistance