e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

How to Implement network Path Prediction in OMNeT++

To implement the network path prediction in OMNeT++, we need to develop a simulation that their network paths are predicted based on the current and historical data. This prediction is useful in proactive routing decision and enhancing network performance by estimating future network conditions. We deliver a detailed guide on how to set up and simulate network path prediction in OMNeT++:

Step-by-Step Implementation:

  1. Understand Path Prediction

Path prediction encompasses computing the future state or performance of network paths based on historical data and current network conditions. This can contain:

  • Predictive Routing: Assessing the best path for future data packets.
  • Traffic Forecasting: Anticipating traffic patterns to optimize network resources.
  1. Set Up OMNeT++ Environment

Make certain to install both OMNeT++ and the INET framework which offers the simulation environment, and INET contains network models that you can extend for path prediction.

  1. Create a New OMNeT++ Project

Open OMNeT++ and Build a new project for path prediction simulation.

  1. Define Network Topology

Generate the network components and their connectivity in .ned files. Comprise nodes that will participate in path prediction.

Example:

network PathPredictionNetwork

{

submodules:

node1: PredictiveNode {

@display(“i=node”);

}

node2: PredictiveNode {

@display(“i=node”);

}

node3: PredictiveNode {

@display(“i=node”);

}

connections:

node1.out –> node2.in;

node2.out –> node3.in;

node1.out –> node3.in;

}

  1. Define Predictive Node

Configure a node module which has path prediction capabilities. This module should manage data collection, prediction algorithms, and route selection.

Example:

simple PredictiveNode

{

parameters:

double predictionInterval = 30s; // Interval for path prediction updates

gates:

inout in;

inout out;

}

  1. Implement Path Prediction Logic

Execute the logic for path prediction in the node’s C++ code. This includes gathering data, smearing prediction algorithms, and making routing decisions based on predictions.

Example:

class PredictiveNode : public cSimpleModule

{

private:

double predictionInterval;

cMessage *predictionUpdateMsg;

std::vector<std::tuple<int, double>> pathMetrics; // Store path metrics (e.g., latency, bandwidth)

protected:

virtual void initialize() override;

virtual void handleMessage(cMessage *msg) override;

void updatePredictions();

void predictAndSelectPath();

public:

// Method to add path metrics

void addPathMetric(int pathId, double metric);

};

void PredictiveNode::initialize()

{

predictionInterval = par(“predictionInterval”);

predictionUpdateMsg = new cMessage(“predictionUpdate”);

scheduleAt(simTime() + predictionInterval, predictionUpdateMsg);

}

void PredictiveNode::handleMessage(cMessage *msg)

{

if (msg == predictionUpdateMsg) {

updatePredictions();

predictAndSelectPath();

scheduleAt(simTime() + predictionInterval, predictionUpdateMsg);

} else {

// Handle incoming messages

}

}

void PredictiveNode::updatePredictions()

{

// Collect and process path metrics to update predictions

// For example, updating latency or bandwidth estimates

}

void PredictiveNode::predictAndSelectPath()

{

// Apply prediction algorithms to forecast path performance

// Select the best path based on predicted metrics

}

void PredictiveNode::addPathMetric(int pathId, double metric)

{

// Add or update path metrics

pathMetrics.push_back(std::make_tuple(pathId, metric));

}

  1. Configure Simulation Parameters

Define the parameters relevant to path prediction for your nodes by modifying the omnetpp.ini file.

Example:

[Config PathPredictionNetwork]

network = PathPredictionNetwork

**.node1.predictionInterval = 20s

**.node2.predictionInterval = 30s

**.node3.predictionInterval = 25s

  1. Run the Simulation

Compile and run the simulation. Monitor how path prediction impacts network performance and routing decisions.

  1. Analyze Results

Assess performance metrics like:

  • Prediction Accuracy: How well the predicted paths match the actual performance.
  • Routing Efficiency: Impact of path prediction on network throughput and latency.
  • Adaptability: How the network adapts to varying conditions based on predictions.

We can visualize and understand the simulation results by using OMNeT++’s analysis tools.

By using this approach, we can now utterly know about how to implement the Network Path Prediction using OMNeT++. For future references, we will provide any related information regarding this topic, if needed.

The implementation results of network Path Prediction are supported by our developers at omnet-manual.com, you can  receive tailored services from our team. We are committed to guiding you through every phase of your project, providing comparative analysis results along the way. Our focus is on proactive routing decisions and improving network performance in alignment with your project specifications.

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .