e-mail address: omnetmanual@gmail.com

Phone number: +91 9444856435

Tel 7639361621

DEFENDER
  • Phd Omnet++ Projects
    • RESEARCH PROJECTS IN OMNET++
  • Network Simulator Research Papers
    • Omnet++ Thesis
    • Phd Omnet++ Projects
    • MS Omnet++ Projects
    • M.Tech Omnet++ Projects
    • Latest Omnet++ Projects
    • 2016 Omnet++ Projects
    • 2015 Omnet++ Projects
  • OMNET INSTALLATION
    • 4G LTE INSTALLATION
    • CASTALIA INSTALLATION
    • INET FRAMEWORK INSTALLATION
    • INETMANET INSTALLATION
    • JDK INSTALLATION
    • LTE INSTALLATION
    • MIXIM INSTALLATION
    • Os3 INSTALLATION
    • SUMO INSTALLATION
    • VEINS INSTALLATION
  • Latest Omnet++ Projects
    • AODV OMNET++ SOURCE CODE
    • VEINS OMNETPP
    • Network Attacks in OMNeT++
    • NETWORK SECURITY OMNET++ PROJECTS
    • Omnet++ Framework Tutorial
      • Network Simulator Research Papers
      • OMNET++ AD-HOC SIMULATION
      • OmneT++ Bandwidth
      • OMNET++ BLUETOOTH PROJECTS
      • OMNET++ CODE WSN
      • OMNET++ LTE MODULE
      • OMNET++ MESH NETWORK PROJECTS
      • OMNET++ MIXIM MANUAL
  • OMNeT++ Projects
    • OMNeT++ OS3 Manual
    • OMNET++ NETWORK PROJECTS
    • OMNET++ ROUTING EXAMPLES
    • OMNeT++ Routing Protocol Projects
    • OMNET++ SAMPLE PROJECT
    • OMNeT++ SDN PROJECTS
    • OMNET++ SMART GRID
    • OMNeT++ SUMO Tutorial
  • OMNET++ SIMULATION THESIS
    • OMNET++ TUTORIAL FOR WIRELESS SENSOR NETWORK
    • OMNET++ VANET PROJECTS
    • OMNET++ WIRELESS BODY AREA NETWORK PROJECTS
    • OMNET++ WIRELESS NETWORK SIMULATION
      • OMNeT++ Zigbee Module
    • QOS OMNET++
    • OPENFLOW OMNETPP
  • Contact

Dec 23 / Posted by OMNeT++ MANUAL

No Comments

A Low-Latency and Low-Power Hybrid Scheme for On-Chip Networks

Network-on-chip (NoC) has emerged as a vital factor that determines the performance and power consumption of many-core systems. This paper proposes a hybrid scheme for NoCs, which aims at obtaining low latency and low power consumption. In the presented hybrid scheme, a novel switching mechanism, called virtual circuit switching, is proposed to intermingle with circuit switching and packet switching. Flits traveling in virtual circuit switching can traverse the router with only one stage. In addition, multiple virtual circuit-switched (VCS) connections are allowed to share a common physical channel.

Moreover, a path allocation algorithm is proposed in this paper to determine VCS connections and circuit-switched connections on a mesh-connected NoC, such that both communication latency and power are optimized.A set of synthetic and real traffic workloads are exploited to evaluate the effectiveness of the proposed hybrid scheme. The experimental results show that our proposed hybrid scheme can efficiently reduce the communication latency and power. For instance, for real traffic workloads, an average of 20.3% latency reduction and 33.2% power saving can be obtained when compared with the baseline NoC. Moreover, when compared with the NoC with virtual point-to-point connections (VIP), the proposed hybrid scheme can reduce the latency by 6.8% with the power decreasing by 11.3% averagely.

Tags: omnet++,omnet++ projects,omnet++ simulation

Categories: Latest Omnet++ Projects

Related Topics

  • Network Intrusion Detection Projects
  • Computer Science Phd Topics
  • Iot Thesis Ideas
  • Cyber Security Thesis Topics
  • Network Security Research Topics

designed by OMNeT++ Projects .